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Rook theory

Let λ = (0 < λ1 ≤ λ2 ≤ · · · ≤ λn) be a partition.

Defn A k-rook placement on λ consists of k squares of the Ferrers

diagram (or “Ferrers board”) of λ, no two in the same row or column.

λ = (4, 4, 6, 6, 8, 9)

Defn Rk(λ) = number of k-rook placements on λ

Defn λ, µ are rook-equivalent iff Rk(λ) = Rk(µ) ∀k.

Example λ = µ =

R1(λ) = R1(µ) = 4

R2(λ) = R2(µ) = 2

Rk(λ) = Rk(µ) = 0 for k > 2



Rook equivalence

Theorem (Foata–Schützenberger 1970)

Each rook-equivalence class contains a unique partition with distinct

parts.

Theorem (Goldman–Joichi–White 1975)

Two partitions

λ = (0 < λ1 ≤ · · · ≤ λn)

µ = (0 < µ1 ≤ · · · ≤ µn)

are rook-equivalent iff {λi − i}n
i=1 = {µi − i}n

i=1 as multisets.

Example GJW (λ) = {0, 1, 1, 2}
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q-counting maximal rook placements

Enumerate rook placements by an “inversion” statistic (generalizing

inversions of permutations):

Rk(λ, q) =
∑

k-rook placements σ

qinv(σ)

Theorem (Garsia–Remmel 1986)

(1) λ, µ are rook-equivalent iff they are q-rook equivalent.

(2) If λ = (λ1 ≤ · · · ≤ λn), then up to a factor of q,

Rn(λ, q) =
n

∏

i=1

[λi − i + 1]q

where [m]q = qm−1
q−1 = 1 + q + q2 + · · · + qm−1.

Observations

(1) If λi < i for some i (that is, λ does not contain a staircase),

then Rn(λ, q) = 0.

(2) If λn = n, then λ is rook-equivalent to (λ1, . . . , λn−1).



Ding’s Schubert varieties

• λ = (λ1 ≤ · · · ≤ λn = m), λi ≥ i (λ contains a staircase)

• C
0 ⊂ C

1 ⊂ · · · ⊂ C
m : standard flag

Defn Xλ =

{

flags 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ C
m :

∀i : dimC Vi = i, Vi ⊂ C
λi

}

.

• Xλ is a Schubert variety Xw in a type-A partial flag manifold Y

Example λ = (4, 4, 5, 5, 5) w = 43521 ∈ S5
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• w is 312-avoiding; in particular Xw is smooth

• [Xw] ∈ H∗(Y ) is a Schubert polynomial indexed by the dominant

permutation w0ww0



The cohomology ring of Xλ

Defn Rλ := H∗(Xλ ; Z) =
⊕

i

H2i(Xλ ; Z)

(because Xλ has no torsion or odd-dimensional cohomology)

Theorem (Ding)
∑

i

qi rankZ H2i(Xλ) = Rn(λ, q).

Theorem (Gasharov–Reiner)

H∗(Xλ) ∼= Z[x1, . . . , xn]/Iλ

where Iλ = 〈hλi−i+1(x1, . . . , xi) : 1 ≤ i ≤ n〉.

Observation If λi < i for some i (that is, λ does not contain a

staircase), then Xλ = ∅.



Trivial isomorphisms among the Xλ’s

Observation Suppose that λi = i for some i:
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Xλ = {V• : V1 ⊂ V2 ⊂ V3 = C
3 ⊂ V4 ⊂ C

5} ∼= F l3 × F l2

Xµ = {V• : V1 ⊂ V2 = C
2 ⊂ V3 ⊂ V4 ⊂ C

5} ∼= F l2 × F l3

Rλ = Z[x1, . . . , x5] / 〈h3(1), h2(2), h1(3), h2(4), h1(5)〉

= Z[x1, x2, x3] / 〈e1, e2, e3〉 ⊗
Z

Z[x4, x5] / 〈e4, e5〉

Rµ = Z[x1, x2] / 〈e1, e2〉 ⊗
Z

Z[x3, x4, x5] / 〈e3, e4, e5〉

In general,

Xλ
∼=

∏

j

Xλ(j), Rλ ∼=
⊗

j

Rλ(j)

where λ(j) are the indecomposable components of λ.



Fine rook equivalence
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Rook equivalence is not enough

λ = (2, 2, 4) µ = (2, 3, 3)
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Rλ ∼= Z[x, y] /
〈

x2, y2
〉

Rµ ∼= Z[s, t] /
〈

s2, st + t2
〉

λ and µ are rook-equivalent, and both cohomology rings have Poincaré

series 1 + 2q + q2. But consider

{primitive f ∈ Rλ
1 : f 2 = 0} = {x, y},

{primitive f ∈ Rµ
1 : f 2 = 0} = {s, s + 2t}.

The former is a Z-basis for H1(Xλ), while the latter is not a Z-basis

for H1(Xµ). Therefore Xλ 6∼= Xµ.

In fact, Rλ
∼= Z[x]/ 〈x〉 ⊗ Z[y]/ 〈y〉, while Rµ does not decompose

as a tensor product of smaller rings.



The main classification theorem

Theorem (D–M–R) For partitions λ and µ with indecomposable

components

λ(1), . . . , λ(r), µ(1), . . . , µ(s),

the following are equivalent:

(1) The multisets {λ(i)}r
i=1 and {µ(i)}s

i=1 are identical.

(2) Xλ
∼= Xµ as algebraic varieties.

(3) H∗(Xλ; Z) ∼= H∗(Xµ; Z) as graded rings.

(1) =⇒ (2): Follows from trivial isomorphisms.

(2) =⇒ (3): Immediate.

• The hard part is (3) =⇒ (1).



Overview of the proof

Main idea: In order to recover λ1, . . . , λn from the structure of

Rλ = H∗(Xλ) as a graded Z-algebra . . .

. . . study nilpotence orders of linear forms.

Defn The nilpotence order of a homogeneous element f ∈ Rλ is

nilpo(f) = min {n ∈ N : fn = 0} .

Proposition If λ is indecomposable, then

min
{

nilpo(f) : f ∈ Rλ
1

}

= λ1.

Proposition Rλ / 〈x1〉 ∼= Rµ, where µ is the partition obtained

by “peeling off” the leftmost column and bottom row of λ:

→

So we can just read off λ from the structure of Rλ by taking successive

quotients by linear forms of appropriate nilpotence order, right?

Well. . .



Good and bad nilpotents

Problem Identify a λ1-nilpotent linear form f with

H∗(Xλ)/ 〈f〉 ∼= H∗(Xλ)/ 〈x1〉

(for instance, f = x1),

independently of the presentation H∗(Xλ) ∼= Rλ/Iλ.

Theorem For λ indecomposable and

k = λ1 = λ2 = · · · = λm < λm+1,

the λ1-nilpotents in Rλ
1 are exactly the following:

x1, x2, . . . , xm (in all cases)

x1 + . . . + xm (iff m = k − 1)

x1 + . . . + xm + 2xm+1 (iff m = k − 1, λk = k + 1, and k is even)

• The “good” nilpotents x1, . . . , xm can be distinguished intrinsi-

cally from the “bad” ones.

• Necessary to show that Rλ has a unique maximal tensor product

decomposition into the Rλ(i)
’s.

(This is probably not true for standard graded Z-algebras in general!)



Partitions λ λ1-nilpotents in Rλ
1

k = 4, m = 2

x1, x2, x3

k = 4, m = 3

x1, x2, x3,

x1 + x2 + x3

k = 4, m = 3, λ4 = 5

x1, x2, x3,

x1 + x2 + x3,

x1 + x2 + x3 + 2x4



Gröbner bases, cores and stickiness

Fact If µ ⊂ λ, then Xµ ↪→ Xλ and Rλ
� Rµ.

(4, 4, 4, 5, 6, 7)
core of λ

⊂ λ = (4, 4, 6, 6, 7, 8) ⊂ (8, 8, 8, 8, 8, 8)
rectangle

• If you want to prove that f = 0 in Rλ . . .

. . . replace λ with a larger rectangle.

• If you want to prove that f 6= 0 in Rλ . . .

. . . replace λ with its core.

Proposition If λ is indecomposable and its own core, then the

generators of Iλ can be manipulated to produce a Gröbner basis in

which the variables xλ1, . . . , xn are “sticky”.

I.e., if λ1 ≤ j ≤ n and f ∈ Rλ involves xj, then all partial Gröbner

reductions of f involve xj.



Questions for further study

1. Poset rook equivalence

When are two rook-placement posets RPλ, RPµ isomorphic?

• Strictly stronger than rook equivalence

• Strictly weaker than Xλ
∼= Xµ

2. Nilpotence and the Schubert variety

• What do all these (Gröbner) calculations say about the (enumer-

ative) geometry of Xλ?

• Nilpotence ⇐⇒ self-intersection numbers?

3. Other Schubert varieties

• Find a presentation for H∗(Xw ; Z), where Xw ⊂ GLn/B

• Can these be used to classify arbitrary Xw up to isomorphism?


