Finer rook equivalence: Classifying Ding's Schubert varieties

Mike Develin Jeremy Martin Victor Reiner (AIM)(University of Minnesota)(University of Minnesota)

Preprint: arXiv:math.AG/0403530 math.umn.edu/~martin/math/pubs.html

Rook theory

Let $\lambda = (0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n)$ be a partition.

Defn A <u>k-rook placement</u> on λ consists of k squares of the Ferrers diagram (or "Ferrers board") of λ , no two in the same row or column.

Defn $R_k(\lambda)$ = number of k-rook placements on λ

Defn λ, μ are rook-equivalent iff $R_k(\lambda) = R_k(\mu) \quad \forall k$.

Example

$$R_1(\lambda) = R_1(\mu) = 4$$

$$R_2(\lambda) = R_2(\mu) = 2$$

$$R_k(\lambda) = R_k(\mu) = 0 \quad \text{for } k > 2$$

Rook equivalence

Theorem (Foata–Schützenberger 1970)

Each rook-equivalence class contains a unique partition with distinct parts.

Theorem (Goldman–Joichi–White 1975)

Two partitions

$$\lambda = (0 < \lambda_1 \le \dots \le \lambda_n)$$

$$\mu = (0 < \mu_1 \le \dots \le \mu_n)$$

are rook-equivalent iff $\{\lambda_i - i\}_{i=1}^n = \{\mu_i - i\}_{i=1}^n$ as multisets.

Example $GJW(\lambda) = \{0, 1, 1, 2\}$

q-counting maximal rook placements

Enumerate rook placements by an "inversion" statistic (generalizing inversions of permutations):

$$R_k(\lambda, q) = \sum_{k ext{-rook placements } \sigma} q^{ ext{inv}(\sigma)}$$

Theorem (Garsia–Remmel 1986)

(1) λ, μ are rook-equivalent iff they are *q*-rook equivalent.

(2) If $\lambda = (\lambda_1 \leq \cdots \leq \lambda_n)$, then up to a factor of q,

$$R_n(\lambda, q) = \prod_{i=1}^n [\lambda_i - i + 1]_q$$

where $[m]_q = \frac{q^m - 1}{q - 1} = 1 + q + q^2 + \dots + q^{m - 1}$.

Observations

(1) If $\lambda_i < i$ for some *i* (that is, λ does not contain a staircase), then $R_n(\lambda, q) = 0$.

(2) If $\lambda_n = n$, then λ is rook-equivalent to $(\lambda_1, \ldots, \lambda_{n-1})$.

Ding's Schubert varieties

• $\lambda = (\lambda_1 \leq \cdots \leq \lambda_n = m), \quad \lambda_i \geq i \quad (\lambda \text{ contains a staircase})$

•
$$\mathbb{C}^0 \subset \mathbb{C}^1 \subset \cdots \subset \mathbb{C}^m$$
: standard flag

Defn
$$X_{\lambda} = \begin{cases} \text{flags } 0 \subset V_1 \subset V_2 \subset \cdots \subset V_n \subset \mathbb{C}^m : \\ \forall i : \dim_{\mathbb{C}} V_i = i, \ V_i \subset \mathbb{C}^{\lambda_i} \end{cases} \end{cases}$$

• X_{λ} is a Schubert variety X_w in a type-A partial flag manifold Y

Example $\lambda = (4, 4, 5, 5, 5)$ $w = 43521 \in S_5$

• w is 312-avoiding; in particular X_w is smooth

• $[X_w] \in H^*(Y)$ is a Schubert polynomial indexed by the dominant permutation $w_0 w w_0$

The cohomology ring of X_{λ}

Defn
$$R^{\lambda} := H^*(X_{\lambda}; \mathbb{Z}) = \bigoplus_i H^{2i}(X_{\lambda}; \mathbb{Z})$$

(because X_{λ} has no torsion or odd-dimensional cohomology)

Theorem (Ding)
$$\sum_{i} q^{i} \operatorname{rank}_{\mathbb{Z}} H^{2i}(X_{\lambda}) = R_{n}(\lambda, q).$$

$$H^*(X_{\lambda}) \cong \mathbb{Z}[x_1, \dots, x_n]/I_{\lambda}$$

where $I_{\lambda} = \langle h_{\lambda_i - i + 1}(x_1, \dots, x_i) : 1 \le i \le n \rangle.$

Observation If $\lambda_i < i$ for some *i* (that is, λ does not contain a staircase), then $X_{\lambda} = \emptyset$.

Trivial isomorphisms among the X_{λ} 's

Observation Suppose that $\lambda_i = i$ for some *i*:

$$\begin{aligned} X_{\lambda} &= \{ V_{\bullet} : V_{1} \subset V_{2} \subset V_{3} = \mathbb{C}^{3} \subset V_{4} \subset \mathbb{C}^{5} \} \cong Fl_{3} \times Fl_{2} \\ X_{\mu} &= \{ V_{\bullet} : V_{1} \subset V_{2} = \mathbb{C}^{2} \subset V_{3} \subset V_{4} \subset \mathbb{C}^{5} \} \cong Fl_{2} \times Fl_{3} \\ R^{\lambda} &= \mathbb{Z}[x_{1}, \dots, x_{5}] / \langle h_{3}(1), h_{2}(2), h_{1}(3), h_{2}(4), h_{1}(5) \rangle \\ &= \mathbb{Z}[x_{1}, x_{2}, x_{3}] / \langle e_{1}, e_{2}, e_{3} \rangle \underset{\mathbb{Z}}{\otimes} \mathbb{Z}[x_{4}, x_{5}] / \langle e_{4}, e_{5} \rangle \\ R^{\mu} &= \mathbb{Z}[x_{1}, x_{2}] / \langle e_{1}, e_{2} \rangle \underset{\mathbb{Z}}{\otimes} \mathbb{Z}[x_{3}, x_{4}, x_{5}] / \langle e_{3}, e_{4}, e_{5} \rangle \end{aligned}$$

In general,

$$X_{\lambda} \cong \prod_{j} X_{\lambda^{(j)}}, \qquad R^{\lambda} \cong \bigotimes_{j} R^{\lambda^{(j)}}$$

where $\lambda^{(j)}$ are the indecomposable components of λ .

Fine rook equivalence

Rook equivalence is not enough

 λ and μ are rook-equivalent, and both cohomology rings have Poincaré series $1+2q+q^2.$ But consider

{primitive
$$f \in R_1^{\lambda}$$
 : $f^2 = 0$ } = { x, y },
{primitive $f \in R_1^{\mu}$: $f^2 = 0$ } = { $s, s + 2t$ }.

The former is a \mathbb{Z} -basis for $H^1(X_{\lambda})$, while the latter is not a \mathbb{Z} -basis for $H^1(X_{\mu})$. Therefore $X_{\lambda} \not\cong X_{\mu}$.

In fact, $R_{\lambda} \cong \mathbb{Z}[x] / \langle x \rangle \otimes \mathbb{Z}[y] / \langle y \rangle$, while R_{μ} does not decompose as a tensor product of smaller rings.

The main classification theorem

Theorem (D–M–R) For partitions λ and μ with indecomposable components

$$\lambda^{(1)}, \ldots, \lambda^{(r)}, \qquad \mu^{(1)}, \ldots, \mu^{(s)},$$

the following are equivalent:

- (1) The multisets $\{\lambda^{(i)}\}_{i=1}^r$ and $\{\mu^{(i)}\}_{i=1}^s$ are identical.
- (2) $X_{\lambda} \cong X_{\mu}$ as algebraic varieties.
- (3) $H^*(X_{\lambda}; \mathbb{Z}) \cong H^*(X_{\mu}; \mathbb{Z})$ as graded rings.

(1) \implies (2): Follows from trivial isomorphisms.

- (2) \implies (3): Immediate.
- The hard part is $(3) \implies (1)$.

Overview of the proof

Main idea: In order to recover $\lambda_1, \ldots, \lambda_n$ from the structure of $R^{\lambda} = H^*(X_{\lambda})$ as a graded Z-algebra ...

... study nilpotence orders of linear forms.

Defn The <u>nilpotence order</u> of a homogeneous element $f \in R^{\lambda}$ is $\operatorname{nilpo}(f) = \min \{n \in \mathbb{N} : f^n = 0\}.$

Proposition If λ is indecomposable, then $\min \left\{ \operatorname{nilpo}(f) : f \in R_1^{\lambda} \right\} = \lambda_1.$

Proposition $R^{\lambda} / \langle x_1 \rangle \cong R^{\mu}$, where μ is the partition obtained by "peeling off" the leftmost column and bottom row of λ :

So we can just read off λ from the structure of R^{λ} by taking successive quotients by linear forms of appropriate nilpotence order, right?

Well...

Good and bad nilpotents

Problem Identify a λ_1 -nilpotent linear form f with $H^*(X^{\lambda})/\langle f \rangle \cong H^*(X^{\lambda})/\langle x_1 \rangle$

(for instance, $f = x_1$),

independently of the presentation $H^*(X^{\lambda}) \cong R^{\lambda}/I_{\lambda}$.

Theorem For λ indecomposable and

$$k = \lambda_1 = \lambda_2 = \dots = \lambda_m < \lambda_{m+1},$$

the λ_1 -nilpotents in R_1^{λ} are exactly the following:

$$\begin{array}{ll} x_1, \ x_2, \ \dots, \ x_m & (\text{in all cases}) \\ x_1 + \dots + x_m & (\text{iff } m = k - 1) \\ x_1 + \dots + x_m + 2x_{m+1} & (\text{iff } m = k - 1, \ \lambda_k = k + 1, \text{ and } k \text{ is even}) \end{array}$$

• The "good" nilpotents x_1, \ldots, x_m can be distinguished intrinsically from the "bad" ones.

• Necessary to show that R^{λ} has a unique maximal tensor product decomposition into the $R^{\lambda^{(i)}}$'s.

(This is probably not true for standard graded Z-algebras in general!)

Partitions λ

\times	\times	\times	\times		
\times	\times	\times			
\times	\times			•	
\times					

\times	\times	\times	\times		
\times	\times	\times			
\times	\times				
\times					

λ 1

$$k = 4, m = 2$$

 x_1, x_2, x_3

$$k = 4, m = 3$$

 $x_1, x_2, x_3, x_1 + x_2 + x_3$

\times	X	\times	X	
\times	\times	\times		
\times	\times			
\times				

$$k = 4, m = 3, \lambda_4 = 5$$

$$x_1, x_2, x_3, x_1 + x_2 + x_3, x_1 + x_2 + x_3 + 2x_4$$

Gröbner bases, cores and stickiness

Fact If $\mu \subset \lambda$, then $X_{\mu} \hookrightarrow X_{\lambda}$ and $R^{\lambda} \twoheadrightarrow R^{\mu}$.

 $\begin{array}{ccc} (4,4,4,5,6,7) & \subset & \lambda = (4,4,6,6,7,8) & \subset & (8,8,8,8,8,8) \\ & & & \\$

- If you want to prove that f = 0 in $R^{\lambda} \dots$... replace λ with a larger rectangle.
- If you want to prove that $f \neq 0$ in $\mathbb{R}^{\lambda} \dots$... replace λ with its core.

Proposition If λ is indecomposable and its own core, then the generators of I_{λ} can be manipulated to produce a Gröbner basis in which the variables $x_{\lambda_1}, \ldots, x_n$ are "sticky".

I.e., if $\lambda_1 \leq j \leq n$ and $f \in R^{\lambda}$ involves x_j , then all partial Gröbner reductions of f involve x_j .

Questions for further study

1. Poset rook equivalence

When are two rook-placement posets RP_{λ} , RP_{μ} isomorphic?

- Strictly stronger than rook equivalence
- Strictly weaker than $X_{\lambda} \cong X_{\mu}$

2. Nilpotence and the Schubert variety

- What do all these (Gröbner) calculations say about the (enumerative) geometry of X_{λ} ?
- Nilpotence \iff self-intersection numbers?

3. Other Schubert varieties

- Find a presentation for $H^*(X_w; \mathbb{Z})$, where $X_w \subset GL_n/B$
- Can these be used to classify arbitrary X_w up to isomorphism?