Finer rook equivalence: Classifying Ding's Schubert varieties

Mike Develin
(AIM)
Jeremy Martin
Victor Reiner
(University of Minnesota)
(University of Minnesota

Preprint: arXiv:math.AG/0403530
math.umn.edu/~martin/math/pubs.html

Rook theory

Let $\lambda=\left(0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}\right)$ be a partition.

Defn A k-rook placement on λ consists of k squares of the Ferrers diagram (or "Ferrers board") of λ, no two in the same row or column.

$$
\lambda=(4,4,6,6,8,9)
$$

Defn $\quad R_{k}(\lambda)=$ number of k-rook placements on λ

Defn $\quad \lambda, \mu$ are rook-equivalent iff $R_{k}(\lambda)=R_{k}(\mu) \quad \forall k$.

Example

$$
\lambda=\square \quad \mu=\square
$$

$$
\begin{aligned}
& R_{1}(\lambda)=R_{1}(\mu)=4 \\
& R_{2}(\lambda)=R_{2}(\mu)=2 \\
& R_{k}(\lambda)=R_{k}(\mu)=0 \quad \text { for } k>2
\end{aligned}
$$

Rook equivalence

Theorem (Foata-Schützenberger 1970)
Each rook-equivalence class contains a unique partition with distinct parts.

Theorem (Goldman-Joichi-White 1975)

Two partitions

$$
\begin{aligned}
& \lambda=\left(0<\lambda_{1} \leq \cdots \leq \lambda_{n}\right) \\
& \mu=\left(0<\mu_{1} \leq \cdots \leq \mu_{n}\right)
\end{aligned}
$$

are rook-equivalent iff $\left\{\lambda_{i}-i\right\}_{i=1}^{n}=\left\{\mu_{i}-i\right\}_{i=1}^{n}$ as multisets.

Example $G J W(\lambda)=\{0,1,1,2\}$

q-counting maximal rook placements

Enumerate rook placements by an "inversion" statistic (generalizing inversions of permutations):

$$
R_{k}(\lambda, q)=\sum_{k \text {-rook placements } \sigma} q^{\operatorname{inv}(\sigma)}
$$

Theorem (Garsia-Remmel 1986)
(1) λ, μ are rook-equivalent iff they are q-rook equivalent.
(2) If $\lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{n}\right)$, then up to a factor of q,

$$
R_{n}(\lambda, q)=\prod_{i=1}^{n}\left[\lambda_{i}-i+1\right]_{q}
$$

where $[m]_{q}=\frac{q^{m}-1}{q-1}=1+q+q^{2}+\cdots+q^{m-1}$.

Observations

(1) If $\lambda_{i}<i$ for some i (that is, λ does not contain a staircase), then $R_{n}(\lambda, q)=0$.
(2) If $\lambda_{n}=n$, then λ is rook-equivalent to $\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$.

Ding's Schubert varieties

- $\lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{n}=m\right), \quad \lambda_{i} \geq i \quad$ (λ contains a staircase)
- $\mathbb{C}^{0} \subset \mathbb{C}^{1} \subset \cdots \subset \mathbb{C}^{m}:$ standard flag

Defn $\quad X_{\lambda}=\left\{\begin{array}{c}\text { flags } 0 \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n} \subset \mathbb{C}^{m}: \\ \forall i: \operatorname{dim}_{\mathbb{C}} V_{i}=i, \quad V_{i} \subset \mathbb{C}^{\lambda_{i}}\end{array}\right\}$.

- X_{λ} is a Schubert variety X_{w} in a type-A partial flag manifold Y

Example $\quad \lambda=(4,4,5,5,5) \quad w=43521 \in S_{5}$

- w is 312-avoiding; in particular X_{w} is smooth
- $\left[X_{w}\right] \in H^{*}(Y)$ is a Schubert polynomial indexed by the dominant permutation $w_{0} w w_{0}$

The cohomology ring of $\boldsymbol{X}_{\boldsymbol{\lambda}}$

Defn $\quad R^{\lambda}:=H^{*}\left(X_{\lambda} ; \mathbb{Z}\right)=\bigoplus_{i} H^{2 i}\left(X_{\lambda} ; \mathbb{Z}\right)$
(because X_{λ} has no torsion or odd-dimensional cohomology)

Theorem (Ding)

$$
\sum_{i} q^{i} \operatorname{rank}_{\mathbb{Z}} H^{2 i}\left(X_{\lambda}\right)=R_{n}(\lambda, q)
$$

Theorem (Gasharov-Reiner)

$$
H^{*}\left(X_{\lambda}\right) \cong \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] / I_{\lambda}
$$

where $I_{\lambda}=\left\langle h_{\lambda_{i}-i+1}\left(x_{1}, \ldots, x_{i}\right): 1 \leq i \leq n\right\rangle$.

Observation If $\lambda_{i}<i$ for some i (that is, λ does not contain a staircase), then $X_{\lambda}=\emptyset$.

Trivial isomorphisms among the $\boldsymbol{X}_{\boldsymbol{\lambda}}$'s

Observation Suppose that $\lambda_{i}=i$ for some i :

$$
\begin{aligned}
X_{\lambda} & =\left\{V_{\bullet}: V_{1} \subset V_{2} \subset V_{3}=\mathbb{C}^{3} \subset V_{4} \subset \mathbb{C}^{5}\right\} \cong F l_{3} \times F l_{2} \\
X_{\mu} & =\left\{V_{\bullet}: V_{1} \subset V_{2}=\mathbb{C}^{2} \subset V_{3} \subset V_{4} \subset \mathbb{C}^{5}\right\} \cong F l_{2} \times F l_{3} \\
R^{\lambda} & =\mathbb{Z}\left[x_{1}, \ldots, x_{5}\right] /\left\langle h_{3}(1), h_{2}(2), h_{1}(3), h_{2}(4), h_{1}(5)\right\rangle \\
& =\mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right] /\left\langle e_{1}, e_{2}, e_{3}\right\rangle \underset{\mathbb{Z}}{\otimes} \mathbb{Z}\left[x_{4}, x_{5}\right] /\left\langle e_{4}, e_{5}\right\rangle \\
R^{\mu} & =\mathbb{Z}\left[x_{1}, x_{2}\right] /\left\langle e_{1}, e_{2}\right\rangle \underset{\mathbb{Z}}{\otimes} \mathbb{Z}\left[x_{3}, x_{4}, x_{5}\right] /\left\langle e_{3}, e_{4}, e_{5}\right\rangle
\end{aligned}
$$

In general,

$$
X_{\lambda} \cong \prod_{j} X_{\lambda^{(j)}}, \quad R^{\lambda} \cong \bigotimes_{j} R^{\lambda^{(j)}}
$$

where $\lambda^{(j)}$ are the indecomposable components of λ.

Fine rook equivalence

Rook equivalence is not enough

$$
R^{\lambda} \cong \mathbb{Z}[x, y] /\left\langle x^{2}, y^{2}\right\rangle \quad R^{\mu} \cong \mathbb{Z}[s, t] /\left\langle s^{2}, s t+t^{2}\right\rangle
$$

λ and μ are rook-equivalent, and both cohomology rings have Poincaré series $1+2 q+q^{2}$. But consider

$$
\begin{aligned}
& \text { \{primitive } \left.f \in R_{1}^{\lambda}: f^{2}=0\right\}=\{x, y\}, \\
& \text { \{primitive } \left.f \in R_{1}^{\mu}: f^{2}=0\right\}=\{s, s+2 t\} .
\end{aligned}
$$

The former is a \mathbb{Z}-basis for $H^{1}\left(X_{\lambda}\right)$, while the latter is not a \mathbb{Z}-basis for $H^{1}\left(X_{\mu}\right)$. Therefore $\boldsymbol{X}_{\boldsymbol{\lambda}} \neq \boldsymbol{X}_{\boldsymbol{\mu}}$.

In fact, $R_{\lambda} \cong \mathbb{Z}[x] /\langle x\rangle \otimes \mathbb{Z}[y] /\langle y\rangle$, while R_{μ} does not decompose as a tensor product of smaller rings.

The main classification theorem

Theorem (D-M-R) For partitions λ and μ with indecomposable

 components$$
\lambda^{(1)}, \ldots, \lambda^{(r)}, \quad \mu^{(1)}, \ldots, \mu^{(s)},
$$

the following are equivalent:
(1) The multisets $\left\{\lambda^{(i)}\right\}_{i=1}^{r}$ and $\left\{\mu^{(i)}\right\}_{i=1}^{s}$ are identical.
(2) $\quad X_{\lambda} \cong X_{\mu}$ as algebraic varieties.
(3) $H^{*}\left(X_{\lambda} ; \mathbb{Z}\right) \cong H^{*}\left(X_{\mu} ; \mathbb{Z}\right)$ as graded rings.
$(1) \Longrightarrow(2)$: Follows from trivial isomorphisms.
$(2) \Longrightarrow(3): \quad$ Immediate.

- The hard part is $(3) \Longrightarrow$ (1).

Overview of the proof

Main idea: In order to recover $\lambda_{1}, \ldots, \lambda_{n}$ from the structure of $R^{\lambda}=H^{*}\left(X_{\lambda}\right)$ as a graded \mathbb{Z}-algebra \ldots
... study nilpotence orders of linear forms.

Defn The nilpotence order of a homogeneous element $f \in R^{\lambda}$ is

$$
\operatorname{nilpo}(f)=\min \left\{n \in \mathbb{N}: f^{n}=0\right\}
$$

Proposition If λ is indecomposable, then

$$
\min \left\{\operatorname{nilpo}(f): f \in R_{1}^{\lambda}\right\}=\lambda_{1} .
$$

Proposition $R^{\lambda} /\left\langle x_{1}\right\rangle \cong R^{\mu}$, where μ is the partition obtained by "peeling off" the leftmost column and bottom row of λ :

So we can just read off λ from the structure of R^{λ} by taking successive quotients by linear forms of appropriate nilpotence order, right?

Well. . .

Good and bad nilpotents

Problem Identify a λ_{1}-nilpotent linear form f with

$$
H^{*}\left(X^{\lambda}\right) /\langle f\rangle \cong H^{*}\left(X^{\lambda}\right) /\left\langle x_{1}\right\rangle
$$

(for instance, $f=x_{1}$),

$$
\text { independently of the presentation } H^{*}\left(X^{\lambda}\right) \cong R^{\lambda} / I_{\lambda} .
$$

Theorem For λ indecomposable and

$$
k=\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}<\lambda_{m+1},
$$

the λ_{1}-nilpotents in R_{1}^{λ} are exactly the following:

$$
\begin{array}{ll}
x_{1}, x_{2}, \ldots, x_{m} & \text { (in all cases) } \\
x_{1}+\ldots+x_{m} & \text { (iff } m=k-1 \text {) } \\
x_{1}+\ldots+x_{m}+2 x_{m+1} & \text { (iff } m=k-1, \lambda_{k}=k+1, \text { and } k \text { is even) }
\end{array}
$$

- The "good" nilpotents x_{1}, \ldots, x_{m} can be distinguished intrinsically from the "bad" ones.
- Necessary to show that R^{λ} has a unique maximal tensor product decomposition into the $R^{\lambda^{(i)} \text {, }}$ s.
(This is probably not true for standard graded \mathbb{Z}-algebras in general!)

Partitions $\boldsymbol{\lambda}$

$$
k=4, m=2
$$

$$
x_{1}, x_{2}, x_{3}
$$

$k=4, m=3$
x_{1}, x_{2}, x_{3},
$x_{1}+x_{2}+x_{3}$
$k=4, m=3, \lambda_{4}=5$
x_{1}, x_{2}, x_{3},
$x_{1}+x_{2}+x_{3}$,
$x_{1}+x_{2}+x_{3}+2 x_{4}$

Gröbner bases, cores and stickiness

Fact If $\mu \subset \lambda$, then $X_{\mu} \hookrightarrow X_{\lambda}$ and $R^{\lambda} \rightarrow R^{\mu}$.

$\underset{\text { core of } \lambda}{(4,4,4,5,6,7)} \subset \lambda=(4,4,6,6,7,8) \quad \subset \quad \underset{\substack{(8,8,8,8,8,8) \\ \text { rectangle }}}{\subset}$

- If you want to prove that $f=0$ in $R^{\lambda} \ldots$
\ldots. replace λ with a larger rectangle.
- If you want to prove that $f \neq 0$ in R^{λ}...
... replace λ with its core.

Proposition If λ is indecomposable and its own core, then the generators of I_{λ} can be manipulated to produce a Gröbner basis in which the variables $x_{\lambda_{1}}, \ldots, x_{n}$ are "sticky".
I.e., if $\lambda_{1} \leq j \leq n$ and $f \in R^{\lambda}$ involves x_{j}, then all partial Gröbner reductions of f involve x_{j}.

Questions for further study

1. Poset rook equivalence

When are two rook-placement posets $R P_{\lambda}, R P_{\mu}$ isomorphic?

- Strictly stronger than rook equivalence
- Strictly weaker than $X_{\lambda} \cong X_{\mu}$

2. Nilpotence and the Schubert variety

- What do all these (Gröbner) calculations say about the (enumerative) geometry of X_{λ} ?
- Nilpotence \Longleftrightarrow self-intersection numbers?

3. Other Schubert varieties

- Find a presentation for $H^{*}\left(X_{w} ; \mathbb{Z}\right)$, where $X_{w} \subset G L_{n} / B$
- Can these be used to classify arbitrary X_{w} up to isomorphism?

