On the Chromatic Symmetric Function of a Tree

Jeremy Martin and Jennifer Wagner
University of Kansas

jmartin@math.ku.edu http://math.ku.edu/~jmartin/pubs.html

FPSAC/SFCA XVIII
San Diego, CA
June 19, 2006

Warning! Attention! ¡Cuidado!

Our FPSAC '06 extended abstract has been superseded by stronger results.

Please refer to the article "On the Chromatic Symmetric Function of a Tree" by Jeremy Martin, Matthew Morin, and Jennifer Wagner (in preparation).

Chromatic Symmetric Functions

$G=$ finite simple graph
$V(G)=$ vertices
$E(G)=$ edges
$n=\# V(G)$
$\underline{x}=\left\{x_{1}, x_{2}, \ldots\right\}=$ commuting indeterminates

Coloring of G : a function $\kappa: V(G) \rightarrow \mathbb{N}$ such that $v w \in E(G) \Longrightarrow \kappa(v) \neq \kappa(w)$

Chromatic symmetric function of G :

$$
\mathbf{X}_{G}=\mathbf{X}_{G}(\underline{x})=\sum_{\text {colorings } \kappa} \prod_{v \in V(G)} x_{\kappa(v)}
$$

(Stanley 1995)

- Symmetric in x_{1}, x_{2}, \ldots
- Homogeneous of degree n
- Stronger invariant than the chromatic polynomial

Examples

- $G=K_{n}$ (complete graph on n vertices)
$\mathbf{X}_{G}=e_{n}=e_{n}(\underline{x})$
- $G=\overline{K_{n}}$ (n vertices, no edges)
$\mathbf{X}_{G}=p_{1^{n}}=\left(x_{1}+x_{2}+\cdots\right)^{n}$
- $G=P_{3}$

$\mathbf{X}_{G}=24 m_{1111}+6 m_{211}+2 m_{22}$
- $G=S_{3}$

$\mathbf{X}_{G}=24 m_{1111}+6 m_{211}+m_{31}$

X_{G} is not a complete invariant

Example (Stanley): The following two nonisomorphic graphs have the same chromatic symmetric function:

Open Question: If T is a tree, does \mathbf{X}_{T} determine T up to isomorphism?

- Yes for $n \leq 23$ (Tan 2006)
- Yes for certain special families of graphs (spiders, some caterpillars)

Coefficients of \mathbf{X}_{G}

For $A \subseteq E(G)$, let $\lambda(A)$ be the partition of n whose parts are the sizes of the components of A.

$$
\lambda(A)=(4,2,2,1)
$$

For all graphs G :

$$
\mathbf{X}_{G}=\sum_{A \subseteq E(G)}(-1)^{\# A} p_{\lambda(A)}
$$

For trees T :

$$
\mathbf{X}_{T}=\sum_{\lambda \vdash n} c_{\lambda}(T) p_{\lambda}
$$

where

$$
c_{\lambda}=c_{\lambda}(T)=(-1)^{n-\ell(\lambda)} \#\{A \subseteq E(T) \mid \lambda(A)=\lambda\}
$$

Elementary Graph Invariants from $\mathrm{X}_{\boldsymbol{G}}$

- $n=|V(G)|=$ degree of \mathbf{X}_{G}
- $|E(G)|=c_{2}=c_{211 \cdots 1}$
- $\#$ connected components $=\min \left\{\ell(\lambda) \mid c_{\lambda} \neq 0\right\}$
- \# leaf edges $=c_{n-1}$
- If G is a tree and $k>1$, then number of subtrees of G with k vertices $=c_{k}$.

The Subtree and Connector Polynomials

For trees $\emptyset \neq S \subseteq T$, let $L(S)=\{$ leaf edges of $S\}$.
Subtree polynomial of T :

$$
\mathbf{S}_{T}=\mathbf{S}_{T}(q, r)=\sum_{\emptyset \neq S \subseteq T} q^{\# S} r^{\# L(S)}
$$

For $\emptyset \neq A \subseteq T$, let $K(A)$ be the unique minimal subset of $E(T)-A$ such that $A \cup K(A)$ is a tree.

Connector polynomial of T :

$$
\mathbf{K}_{T}=\mathbf{K}_{T}(x, y)=\sum_{\emptyset \neq A \subseteq T} x^{\# A} y^{\# K(A)} .
$$

Proposition (Chaudhary-Gordon, 1991) The subtree and connector polynomials can be recovered from each other.

Theorem (JLM-Morin-JDW, 2006)

The subtree and connector polynomials of a tree can be recovered from its chromatic symmetric function.

Specifically, let

$$
\psi(\lambda, a, b)=(-1)^{a+b}\binom{\ell-1}{\ell-n+a+b} \sum_{k=1}^{\ell}\binom{\lambda_{k}-1}{a}
$$

Then

$$
\mathbf{K}_{T}(x, y)=\sum_{a>0} \sum_{b \geq 0} x^{a} y^{b} \sum_{\lambda \vdash n} \psi(\lambda, a, b) c_{\lambda}(T) .
$$

Equivalently, define a symmetric function Ψ_{n} by

$$
\Psi_{n}(x, y)=\sum_{a>0} \sum_{b \geq 0} x^{a} y^{b} \sum_{\lambda \vdash n} \psi(\lambda, a, b) \frac{p_{\lambda}}{z_{\lambda}} .
$$

Then

$$
\mathbf{K}_{T}(x, y)=\left\langle\Psi_{n}(x, y), \mathbf{X}_{T}\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the usual Hall scalar product on the space of symmetric functions.

Sketch of the Proof

The coefficient of $x^{a} y^{b}$ in $\mathbf{K}_{T}(x, y)$ is

$$
\#\{A \subseteq T \mid \# A=a, \# K(A)=b\}
$$

which (via manipulatorics) equals

$$
\begin{equation*}
\sum_{\lambda \vdash n}(-1)^{a+b+n-\ell(\lambda)}\binom{\ell(\lambda)-1}{\ell(\lambda)-n+a+b} \sum_{\substack{F \subset T \\ \lambda(F)=\lambda}} \alpha(F) . \tag{*}
\end{equation*}
$$

where

$$
\alpha(F)=\#\{A \mid \# A=a, A \cup K(A) \subseteq F\} .
$$

The key observation is that

$$
\begin{equation*}
\alpha(F)=\sum_{k=1}^{\ell(\lambda)}\binom{\lambda_{k}-1}{a} \tag{**}
\end{equation*}
$$

This depends only on $\lambda(F)$, so $(*)$ can be rewritten as a linear combination of the $c_{\lambda}(T)$.

A Positivity Property of Ψ_{n}
Rewrite Ψ_{n} in the basis of homogeneous symmetric functions h_{μ} as

$$
\Psi_{n}(x, y)=\sum_{i, j} \sum_{\mu \vdash n} \xi(\mu, i, j) x^{i} y^{j} h_{\mu}
$$

where $\xi(\mu, i, j) \in \mathbb{Q}$.

Conjecture: Let $\varepsilon(\mu)$ be the number of parts of μ of even length. Then

$$
(-1)^{\varepsilon(\mu)} \xi(\mu, i, j) \geq 0
$$

for all partitions μ and integers i, j.

- Easy to verify for small n (using, e.g., Stembridge's SF package for Maple).
- In general $\xi(\mu, i, j) \notin \mathbb{Z}$, but it appears that

$$
z_{\mu} \cdot \xi(\mu, i, j) \in \mathbb{Z}
$$

Consequences of the Main Theorem

1. The path and degree sequences of T, i.e., the numbers

$$
\pi_{i}=\#\{\text { paths in } T \text { with } i \text { edges }\}
$$

and

$$
\delta_{j}=\#\{\text { vertices of } T \text { of degree } j\}
$$

can be recovered from its chromatic symmetric function.
2. Membership in certain families of trees (spiders, caterpillars, ...) can be deduced from \mathbf{X}_{T}.

The subtree and connector polynomials do not suffice to distinguish trees with $n \geq 11$ (Eisenstat-Gordon, 2006).
So we still do not know whether the chromatic symmetric function is a complete invariant.

A Little Entomology

A spider is a tree with exactly one vertex of degree ≥ 3 (the torso).
A caterpillar is a tree whose nonleaf vertices form a path (the spine).

Theorem (JLM-JDW)
Every spider can be reconstructed from its chromatic symmetric function.
(In fact, from its subtree polynomial; most of the path numbers are elementary symmetric functions of the leg sizes.)

Caterpillars are not distinguished by their subtree polynomials; in fact there exist infinitely many counterexamples (Eisenstat-Gordon, 2006), starting at $n=11$.

Theorem (Morin)

If T is a symmetric caterpillar (i.e., it has an automorphism reversing the spine) then it is distinguished by \mathbf{X}_{T}.

Theorem (JLM-JDW-Morin)

If T is a caterpillar in which every spine vertex has a different positive number of adjacent leaves, then it is distinguished by \mathbf{X}_{T}.

Further Questions

- Prove the skew-positivity of $\Psi_{n}(x, y)$, preferably by finding a combinatorial interpretation for $z_{\mu} \xi_{\mu}$.
- Are there other special classes of trees distinguished by their chromatic symmetric function (e.g., binary trees)?
- Does the Eisenstat-Gordon construction of nonisomorphic trees with the same subtree polynomial produce two trees with the same chromatic symmetric function?

