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Warning! Attention! ¡Cuidado!

Our FPSAC ’06 extended abstract has been superseded by
stronger results.

Please refer to the article “On the Chromatic Symmetric
Function of a Tree” by Jeremy Martin, Matthew Morin,
and Jennifer Wagner (in preparation).



Chromatic Symmetric Functions

G = finite simple graph
V (G) = vertices
E(G) = edges
n = #V (G)
x = {x1, x2, . . . } = commuting indeterminates

Coloring of G: a function κ : V (G) → N such that

vw ∈ E(G) =⇒ κ(v) 6= κ(w)

Chromatic symmetric function of G:

XG = XG(x) =
∑

colorings κ

∏

v ∈V (G)

xκ(v)

(Stanley 1995)

• Symmetric in x1, x2, . . .

• Homogeneous of degree n

• Stronger invariant than the chromatic polynomial



Examples

• G = Kn (complete graph on n vertices)

XG = en = en(x)

• G = Kn (n vertices, no edges)

XG = p1n = (x1 + x2 + · · · )n

• G = P3

XG = 24m1111 + 6m211 + 2m22

• G = S3

XG = 24m1111 + 6m211 +m31



XG is not a complete invariant

Example (Stanley): The following two nonisomorphic graphs
have the same chromatic symmetric function:

Open Question: If T is a tree, does XT determine T up
to isomorphism?

• Yes for n ≤ 23 (Tan 2006)

• Yes for certain special families of graphs (spiders, some
caterpillars)



Coefficients of XG

For A ⊆ E(G), let λ(A) be the partition of n whose parts
are the sizes of the components of A.

A = λ(A) = (4, 2, 2, 1)

For all graphs G:

XG =
∑

A⊆E(G)

(−1)#Apλ(A).

For trees T :
XT =

∑

λ`n

cλ(T )pλ

where

cλ = cλ(T ) = (−1)n−`(λ)#{A ⊆ E(T ) | λ(A) = λ}.



Elementary Graph Invariants from XG

• n = |V (G)| = degree of XG

• |E(G)| = c2 = c211···1

• # connected components = min{`(λ) | cλ 6= 0}

• # leaf edges = cn−1

• If G is a tree and k > 1, then

number of subtrees of G with k vertices = ck.

· · ·



The Subtree and Connector Polynomials

For trees ∅ 6= S ⊆ T , let L(S) = {leaf edges of S}.

Subtree polynomial of T :

ST = ST (q, r) =
∑

∅6=S⊆T

q#Sr#L(S)

For ∅ 6= A ⊆ T , let K(A) be the unique minimal subset
of E(T ) − A such that A ∪K(A) is a tree.

Connector polynomial of T :

KT = KT (x, y) =
∑

∅6=A⊆T

x#Ay#K(A).

Proposition (Chaudhary-Gordon, 1991) The subtree and
connector polynomials can be recovered from each other.



Theorem (JLM-Morin-JDW, 2006)

The subtree and connector polynomials of a tree can be
recovered from its chromatic symmetric function.

Specifically, let

ψ(λ, a, b) = (−1)a+b
(

`− 1

`− n + a+ b

)

∑̀

k=1

(

λk − 1

a

)

Then

KT (x, y) =
∑

a>0

∑

b≥0

xayb
∑

λ`n

ψ(λ, a, b) cλ(T ).

Equivalently, define a symmetric function Ψn by

Ψn(x, y) =
∑

a>0

∑

b≥0

xayb
∑

λ`n

ψ(λ, a, b)
pλ

zλ
.

Then
KT (x, y) =

〈

Ψn(x, y), XT

〉

where 〈·, ·〉 is the usual Hall scalar product on the space
of symmetric functions.



Sketch of the Proof

The coefficient of xayb in KT (x, y) is

#{A ⊆ T | #A = a, #K(A) = b}

which (via manipulatorics) equals

∑

λ`n

(−1)a+b+n−`(λ)

(

`(λ) − 1

`(λ) − n + a + b

)

∑

F⊆T
λ(F )=λ

α(F ).

(∗)

where

α(F ) = #{A | #A = a, A ∪K(A) ⊆ F}.

The key observation is that

α(F ) =

`(λ)
∑

k=1

(

λk − 1

a

)

(∗∗)

This depends only on λ(F ), so (∗) can be rewritten as a
linear combination of the cλ(T ).



A Positivity Property of Ψn

Rewrite Ψn in the basis of homogeneous symmetric func-
tions hµ as

Ψn(x, y) =
∑

i,j

∑

µ`n

ξ(µ, i, j)xi yj hµ

where ξ(µ, i, j) ∈ Q.

Conjecture: Let ε(µ) be the number of parts of µ of
even length. Then

(−1)ε(µ)ξ(µ, i, j) ≥ 0

for all partitions µ and integers i, j.

• Easy to verify for small n (using, e.g., Stembridge’s
SF package for Maple).

• In general ξ(µ, i, j) 6∈ Z, but it appears that

zµ · ξ(µ, i, j) ∈ Z.



Consequences of the Main Theorem

1. The path and degree sequences of T , i.e., the numbers

πi = #{paths in T with i edges}

and

δj = #{vertices of T of degree j}

can be recovered from its chromatic symmetric function.

2. Membership in certain families of trees (spiders, cater-
pillars, . . . ) can be deduced from XT .

The subtree and connector polynomials do not suffice to
distinguish trees with n ≥ 11 (Eisenstat-Gordon, 2006).

So we still do not know whether the chromatic symmetric
function is a complete invariant.



A Little Entomology

A spider is a tree with exactly one vertex of degree ≥ 3
(the torso).

A caterpillar is a tree whose nonleaf vertices form a path
(the spine).

Theorem (JLM-JDW)
Every spider can be reconstructed from its chromatic

symmetric function.

(In fact, from its subtree polynomial; most of the path
numbers are elementary symmetric functions of the leg
sizes.)



Caterpillars are not distinguished by their subtree polyno-
mials; in fact there exist infinitely many counterexamples
(Eisenstat-Gordon, 2006), starting at n = 11.

Theorem (Morin)
If T is a symmetric caterpillar (i.e., it has an automor-

phism reversing the spine) then it is distinguished by XT .

Theorem (JLM-JDW-Morin)
If T is a caterpillar in which every spine vertex has a

different positive number of adjacent leaves, then it is dis-
tinguished by XT .



Further Questions

• Prove the skew-positivity of Ψn(x, y), preferably by
finding a combinatorial interpretation for zµξµ.

• Are there other special classes of trees distinguished
by their chromatic symmetric function (e.g., binary trees)?

• Does the Eisenstat-Gordon construction of nonisomor-
phic trees with the same subtree polynomial produce two
trees with the same chromatic symmetric function?


