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Abstract. The simplicial rook graph SR(d, n) is the graph whose vertices are

the lattice points in the nth dilate of the standard simplex in Rd, with two
vertices adjacent if they differ in exactly two coordinates. We prove that the

adjacency and Laplacian matrices of SR(3, n) have integral spectrum for ev-

ery n. The proof proceeds by calculating an explicit eigenbasis. We conjecture
that SR(d, n) is integral for all d and n, and present evidence in support of this

conjecture. For n <
(d
2

)
, the evidence indicates that the smallest eigenvalue

of the adjacency matrix is −n, and that the corresponding eigenspace has di-
mension given by the Mahonian numbers, which enumerate permutations by

number of inversions.

1. Introduction

Let d and n be nonnegative integers. The simplicial rook graph SR(d, n) is the
graph with vertices

V (d, n) :=

{
x = (x1, . . . , xd) : 0 ≤ xi ≤ n,

d∑
i=1

xi = n

}
with two vertices adjacent if they agree in all but two coordinates. This graph has
N =

(
n+d−1
d−1

)
vertices and is regular of degree δ = (d−1)n. Geometrically, let ∆d−1

denote the standard simplex in Rd (i.e., the convex hull of the standard basis vectors
e1, . . . , ed) and let n∆d−1 denote its nth dilate (i.e., the convex hull of ne1, . . . , ned).
Then V (d, n) is the set of lattice points in n∆d−1, with two points adjacent if their
difference is a multiple of ei − ej for some i, j. Thus the independence number
of SR(d, n) is the maximum number of nonattacking rooks that can be placed on
a simplicial chessboard with n + 1 “squares” on each side. Nivasch and Lev [13]
and Blackburn, Paterson and Stinson [2] showed independently that for d = 3, this
independence number is b(2n+ 3)/3c.

As far as we can tell, the class of simplicial rook graphs has not been stud-
ied before. For some small values of the parameters, SR(d, n) is a well-known
graph: SR(2, n) and SR(d, 1) are complete of orders n + 1 and d respectively;
SR(3, 2) is isomorphic to the octahedron; and SR(d, 2) is isomorphic to the John-
son graph J(d+ 1, 2). On the other hand, simplicial rook graphs are not in general
vertex-transitive, strongly regular or distance-regular, nor are they line graphs or
noncomplete extended p-sums (in the sense of [7, p. 55]). They are also not to be
confused with the simplicial grid graph, in which two vertices are adjacent only if
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Figure 1. The graph SR(3, 3).

their difference vector is exactly ei − ej (as opposed to some scalar multiple) nor
with the triangular graph Tn, which is the line graph of Kn [3, p.23], [8, §10.1].

Let G be a simple graph on vertices [n] = {1, . . . , n}. The adjacency matrix
A = A(G) is the n × n symmetric matrix whose (i, j) entry is 1 if ij is an edge, 0
otherwise. The Laplacian matrix is L = L(G) = D − A, where D is the diagonal
matrix whose (i, i) entry is the degree of vertex i. The graph G is said to be integral
(resp. Laplacian integral) if all eigenvalues of A (resp. L) are integers. If G is regular
of degree δ, then these conditions are equivalent, since every eigenvector of A with
eigenvalue λ is an eigenvector of L with eigenvalue δ − λ.

We can now state our main theorem.

Theorem 1.1. For every n ≥ 1, the simplicial rook graph SR(3, n) is integral and
Laplacian integral, with eigenvalues as follows:

If n = 2m + 1 is odd:
Eigenvalue of A Eigenvalue of L Multiplicity Eigenvector

−3 4m+ 5 = 2n+ 3
(
2m
2

)
Ha,b,c

−2,−1, . . . ,m− 3 3m+ 5 . . . , 4m+ 4 3 Pk

m− 1 3m+ 3 2 R
m, . . . , 2m− 1 = n− 2 2m+ 3 . . . , 3m+ 2 3 Qk

4m+ 2 = 2n 0 1 J

If n = 2m is even:
Eigenvalue of A Eigenvalue of L Multiplicity Eigenvector

−3 4m+ 3 = 2n+ 3
(
2m−1

2

)
Ha,b,c

−2,−1, . . . ,m− 4 3m+ 4, . . . , 4m+ 2 3 Pk

m− 3 3m+ 3 2 R
m− 1, . . . , 2m− 2 = n− 2 2m+ 2, . . . , 3m+ 1 3 Qk

4m = 2n 0 1 J

Integrality and Laplacian integrality typically arise from tightly controlled combi-
natorial structure in special families of graphs, including complete graphs, complete
bipartite graphs and hypercubes (classical; see, e.g., [16, §5.6]), Johnson graphs [10],
Kneser graphs [11] and threshold graphs [12]. (General references on graph eigen-
values and related topics include [1, 3, 7, 8].) For simplicial rook graphs, lattice



ON THE SPECTRA OF SIMPLICIAL ROOK GRAPHS 3

geometry provides this combinatorial structure. To prove Theorem 1.1, we con-

struct a basis of R(n+2
2 ) consisting of eigenvectors of A(SR(3, n)), as indicated in

the tables above. The basis vectors Ha,b,c for the largest eigenspace (Prop. 2.6) are
signed characteristic vectors for hexagons centered at lattice points in the interior
of n∆3 (see Figure 2). The other eigenvectors Pk,R,Qk (Props. 2.8, 2.9, 2.10) are
most easily expressed as certain sums of characteristic vectors of lattice lines.

Theorem 1.1, together with Kirchhoff’s matrix-tree theorem [8, Lemma 13.2.4]
implies the following formula for the number of spanning trees of SR(d, n).

Corollary 1.2. The number of spanning trees of SR(3, n) is

32(2n+ 3)(
n−1
2 )

2n+2∏
a=n+2

a3

3(n+ 1)2(n+ 2)(3n+ 5)3
if n is odd,

32(2n+ 3)(
n−1
2 )

2n+2∏
a=n+2

a3

3(n+ 1)(n+ 2)2(3n+ 4)3
if n is even.

Based on experimental evidence gathered using Sage [17], we make the following
conjecture:

Conjecture 1.3. The graph SR(d, n) is integral for all d and n.

We discuss the general case in Section 3. The construction of hexagon vectors
generalizes as follows: for each permutohedron whose vertices are lattice points in
n∆d−1, its signed characteristic vector is an eigenvector of eigenvalue −

(
d
2

)
(Propo-

sition 3.1). This is in fact the smallest eigenvalue of SR(d, n) when n ≥
(
d
2

)
.

Moreover, these eigenvectors are linearly independent and, for fixed d, account for
“almost all” of the spectrum as n→∞, in the sense that

lim
n→∞

dim (span of permutohedron eigenvectors)

|V (d, n)|
= 1.

When n <
(
d
2

)
, the simplex n∆d−1 is too small to contain any lattice permuto-

hedra. On the other hand, the signed characteristic vectors of partial permutohedra
(i.e., intersections of lattice permutohedra with SR(d, n)) are eigenvectors with
eigenvalue −n. Experimental evidence indicates that this is in fact the smallest
eigenvalue of A(d, n), and that these partial permutohedra form a basis for the
corresponding eigenspace. Unexpectedly, its dimension appears to be the Maho-
nian number M(d, n) of permutations in Sd with exactly n inversions (sequence
#A008302 in Sloane [15]). In Section 3.2, we construct a family of eigenvectors by
placing rooks (ordinary rooks, not simplicial rooks!) on Ferrers boards.

2. Proof of the Main Theorem

We begin by reviewing some basic algebraic graph theory; for a general reference,
see, e.g., [8]. Let G = (V,E) be a simple undirected graph with N vertices. The
adjacency matrix A(G) is the N ×N matrix whose (i, j) entry is 1 if vertices i and
j are adjacent, 0 otherwise. The Laplacian matrix is L(G) = D(G)−A(G), where
D(G) is the diagonal matrix of vertex degrees. These are both real symmetric
matrices, so they are diagonalizable, with real eigenvalues, and eigenspaces with
different eigenvalues are orthogonal [8, §8.4].
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Proposition 2.1. The graph SR(d, n) has
(
n+d−1
d−1

)
vertices and is regular of de-

gree (d − 1)n. In particular, its adjacency and Laplacian matrices have the same
eigenvectors.

Proof. Counting vertices is the classic “stars-and-bars” problem (with n stars and
d−1 bars). For each x ∈ V (d, n) and each pair of coordinates i, j, there are xi+xj
other vertices that agree with x in all coordinates but i and j. Therefore, the degree
of x is

∑
1≤i<j≤n(xi + xj) = (d− 1)

∑n
i=1 xi = (d− 1)n. �

The matrices A(d, n) and L(d, n) act on the vector space RN with standard basis
{eijk : (i, j, k) ∈ V (d, n)}. We will sometimes consider the standard basis vectors
as ordered lexicographically, for the purpose of showing that a collection of vectors
is linearly independent.

In the rest of this section, we focus exclusively on the case d = 3, and regard n
as fixed. We fix N :=

(
n+2
2

)
, the number of vertices of SR(3, n), and abbreviate

A = A(3, n).

2.1. Basic linear algebra calculations. Define

Xi :=
∑

j+k=n−i

eijk, J :=
∑

i+j+k=n

eijk,

Yj :=
∑

i+k=n−j

eijk, Bn := {Xi,Yi,Zi : 0 ≤ i ≤ n},

Zk :=
∑

i+j=n−k

eijk, B′n := {Xi,Yi,Zi : 0 ≤ i ≤ n− 1}.

The vectors Xi,Yj ,Zk are the characteristic vectors of lattice lines in n∆2; see
Figure 2. Note that the symmetric group S3 acts on SR(3, n) (hence on each of
its eigenspaces) by permuting the coordinates of vertices.

Lemma 2.2. We have

J =

n∑
i=0

Xi =

n∑
i=0

Yi =

n∑
i=0

Zi and nJ =

n∑
i=0

i(Xi + Yi + Zi).

Proof. The first assertion is immediate. For the second, when we expand the sum
in terms of the eijk, the coefficient on each eijk is i+ j + k = n. �

Proposition 2.3. For every i, j, k, we have

Aeijk = Xi + Yj + Zk − 3eijk, (2.1a)

AJ = 2nJ, (2.1b)

AXi = (n− i− 2)Xi +

n−i∑
j=0

[
Yj + Zj

]
, (2.1c)

AYi = (n− i− 2)Yi +

n−i∑
j=0

[
Xj + Zj

]
, (2.1d)

AZi = (n− i− 2)Zi +

n−i∑
j=0

[
Xj + Yj

]
. (2.1e)
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Proof. Formula (2.1a) is immediate from the definition of A, and (2.1b) follows
because SR(3, n) is (2n)-regular. For (2.1c), we have

AXi =
∑

j+k=n−i

Aei,j,k =
∑

j+k=n−i

[Xi + Yj + Zk − 3ei,j,k]

= (n− i+ 1)Xi − 3
∑

j+k=n−i

ei,j,k +
∑

j+k=n−i

[Yj + Zk]

= (n− i− 2)Xi +

n−i∑
j=0

[Yj + Zj ]

and (2.1d) and (2.1e) are proved similarly. �

For future use, we also record (without proof) some elementary summation for-
mulas.

Lemma 2.4. The following summations hold:

n−k−1∑
i=k+1

[
4i− 2n

]
= 0,

n−k−1∑
i=k+1

[
4i− 2k − 2− n

]
= (n− 2k − 1)(n− 2k − 2),

n−j∑
i=k+1

[
4i− 2n

]
= 2(n− j − k)(k − j + 1),

n−j∑
i=k+1

[
4i− 2k − 2− n

]
= (n− 2j)(n− k − j).

Lemma 2.5. The following summations hold:

n−k∑
i=k

[
4i− 2n

]
= 0,

n−k∑
i=k

[
4i− 3n+ 2k − 2

]
= −(n− 2k + 1)(n− 2k + 2),

n−j∑
i=k

[
4i− 2n

]
= 2(j − k)(−n+ j + k − 1),

n−j∑
i=k

[
4i− 3n+ 2k − 2

]
= (2j + 2− 4k + n)(−n+ j + k − 1).

Having completed these preliminaries, we now construct the eigenvectors of
SR(3, n).

2.2. Hexagon vectors. Let (a, b, c) ∈ V (3, n) with a, b, c > 0. The corresponding
“hexagon vector” is defined as

Ha,b,c := ea−1,b,c+1 − ea,b−1,c+1 + ea+1,b−1,c − ea+1,b,c−1 + ea,b+1,c−1 − ea−1,b+1,c.

Geometrically, this is the characteristic vector, with alternating signs, of a regular
lattice hexagon centered at the lattice point (a, b, c) in the interior of n∆2 (see
Figure 2).

Proposition 2.6. The vectors {Ha,b,c : (a, b, c) ∈ V (d, n), a, b, c > 0} are linearly
independent, and each one is an eigenvector of A with eigenvalue −3.

Proof. The equality AHa,b,c = −3Ha,b,c is straightforward from (2.1a). The lex-
icographic leading term of Ha,b,c is ea−1,b,c+1, which is different for each (a, b, c),
implying linear independence. �

Proposition 2.7. Let n ≥ 1 and let Hn = {Ha,b,c : 0 < a, b, c < n}. Then the
spaces RHn and RBn spanned by Hn and Bn are orthogonal complements in RN .
In particular, dimRBn =

(
n+2
2

)
−
(
n−1
2

)
= 3n, and the set B′n is a basis for RBn

(and all linear relations on the Xi,Yi,Zi are generated by those of Lemma 2.2).
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Figure 2. (left) The graph SR(3, 3). (center) The vector X1

and the lattice line it supports. (right) H1,1,1.

Proof. The scalar product Ha,b,c ·Xi is clearly zero if the two vectors have disjoint
supports (i.e., i 6∈ {a − 1, a, a + 1}) and is −1 + 1 = 0 otherwise (geometrically,
this corresponds to the statement that any two adjacent vertices in the hexagon
occur with opposite signs in Ha,b,c; see Figure 2). Therefore RHn and RBn are
orthogonal subspaces of RN , and dimRBn ≤ 3n. For the opposite inequality, we
induct on n. In the base case n = 1, the vectors X0, Y0, Z0 form a basis of R3. For
larger n, let Mn be the matrix with columns Xn, Yn, Zn, . . . , X0, Y0, Z0 and rows
ordered lexicographically, and let M̃n be Mn with the columns reordered as

X0, Yn, Zn, Xn, Yn−1, Zn−1, . . . , X1, Y0, Z0.

For example,

M̃3 =

X0 Y3 Z3 X3 Y2 Z2 X2 Y1 Z1 X1 Y0 Z0

003 1 0 1 0 0 0 0 0 0 0 1 0
012 1 0 0 0 0 1 0 1 0 0 0 0
021 1 0 0 0 1 0 0 0 1 0 0 0
030 1 1 0 0 0 0 0 0 0 0 0 1
102 0 0 0 0 0 1 0 0 0 1 1 0
111 0 0 0 0 0 0 0 1 1 1 0 0
120 0 0 0 0 1 0 0 0 0 1 0 1
201 0 0 0 0 0 0 1 0 1 0 1 0
210 0 0 0 0 0 0 1 1 0 0 0 1
300 0 0 0 1 0 0 0 0 0 0 1 1

If a > 0, then the entries of Mn in row (a, b, c) and columns Xi, Yi, Zi equal the

entries of Mn−1 in row (a−1, b, c) and columns Xi−1, Yi, Zi respectively. Hence M̃n

has the block form

[
U ∗
0 Mn−1

]
, where the entries of ∗ are irrelevant and

U =


1 0 1
1 0 0
...

...
...

1 0 0
1 1 0

 .
Since rankU = 3, it follows by induction that rankMn ≥ rankMn−1 + 3 = 3n.
Using Lemma 2.2, one can solve for each of Xn, Yn, and Zn as linear combinations
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of the vectors in B′n. It follows that B′n is a basis, and that the linear relations of
Lemma 2.2 generate all linear relations on the vectors {Xi,Yi,Zi}. �

2.3. Non-Hexagon Eigenvectors. We now determine the other eigenspaces of A.
The vector J spans an eigenspace of dimension 1; in addition, we will show that
there is one eigenspace of dimension 2 (Prop. 2.8) and two families of eigenspaces of
dimension 3 (Props. 2.9 and 2.10). Together with the hexagon vectors, these form
a complete decomposition of RN into eigenspaces of A. Throughout, let σ and ρ
denote the permutations (1 2 3) and (1 2) (written in cycle notation), respectively,
so that

σ(Xi) = Yi, σ(Yj) = Zj , σ(Zk) = Xk, ρ(Xi) = Yi, ρ(Yj) = Xj , ρ(Zk) = Zk.

Proposition 2.8. Let n ≥ 1 and k = bn/2c. Then

R := Xk −Yk −Xk+1 + Yk+1

is a nonzero eigenvector of A with eigenvalue n− k− 3 = (n− 6)/2 if n is even, or
n− k − 2 = (n− 3)/2 if n is odd. Moreover, the S3-orbit of R has dimension 2.

Proof. By (2.1c). . . (2.1e),

AR = (n− k − 2)(Xk −Yk) +

n−k∑
j=0

[
Yj −Xj

]
+ (n− k − 3)(Yk+1 −Xk+1) +

n−k−1∑
j=0

[
Xj −Yj

]
= (n− k − 2)(Xk −Yk) + (Yn−k −Xn−k) + (n− k − 3)(Yk+1 −Xk+1)

=

{
(n− k − 2)(Xk −Yk) + (Yk −Xk) + (n− k − 3)(Yk+1 −Xk+1) if n is even,

(n− k − 2)(Xk −Yk) + (Yk+1 −Xk+1) + (n− k − 3)(Yk+1 −Xk+1) if n is odd

=

{
(n− k − 3)(Xk −Yk) + (n− k − 3)(Yk+1 −Xk+1) if n is even,

(n− k − 2)(Xk −Yk) + (n− k − 2)(Yk+1 −Xk+1) if n is odd

=

{
(n− k − 3)R if n is even,

(n− k − 2)R if n is odd

as desired. The vectors R and σ(R) = Yk − Zk − Yk+1 + Zk+1 are linearly
independent; on the other hand, ρ(R) = R and R + σ(R) + σ2(R) = 0, so the
S3-orbit of R has dimension 2. �

Proposition 2.9. For all integers k with 0 ≤ k ≤ bn−32 c, the vector

Pk := −(n− 2k− 1)(n− 2k− 2)Zn−k +

n−k−1∑
i=k+1

[
2(i− k− 1)Zi + (2i−n)(Xi + Yi)

]
is a nonzero eigenvector of A with eigenvalue k − 2. Moreover, the S3-orbit of Pk

has dimension 3.
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Proof. The upper bound on k is equivalent to n− 2k − 2 > 0, so the coefficient of
Zn−k in Pk is nonzero, so Pk 6= 0. By (2.1c). . . (2.1e), we have

APk = −(n− 2k − 1)(n− 2k − 2)

(
(k − 2)Zn−k +

k∑
i=0

[
Xi + Yi

])

+

n−k−1∑
i=k+1

2(i− k − 1)

(n− i− 2)Zi +

n−i∑
j=0

[
Xj + Yj

]
+(2i− n)

(n− i− 2)(Xi + Yi) +

n−i∑
j=0

[
Xj + Yj + 2Zj

]
= −(n− 2k − 1)(n− 2k − 2)(k − 2)Zn−k − (n− 2k − 1)(n− 2k − 2)

k∑
i=0

[
Xi + Yi

]
+

n−k−1∑
i=k+1

[
(2i− n)(n− i− 2)(Xi + Yi) + 2(i− k − 1)(n− i− 2)Zi

]

+

n−k−1∑
i=k+1

n−i∑
j=0

[
(4i− 2k − 2− n)(Xj + Yj) + (4i− 2n)Zj

]
.

Interchanging the order of summation in the double sum gives

APk = −(n− 2k − 1)(n− 2k − 2)(k − 2)Zn−k

− (n− 2k − 1)(n− 2k − 2)

k∑
i=0

[
Xi + Yi

]
+

n−k−1∑
i=k+1

[
(2i− n)(n− i− 2)(Xi + Yi) + 2(i− k − 1)(n− i− 2)Zi

]

+

k∑
j=0

n−k−1∑
i=k+1

[
(4i− 2k − 2− n)(Xj + Yj) + (4i− 2n)Zj

]

+

n−k−1∑
j=k+1

n−j∑
i=k+1

[
(4i− 2k − 2− n)(Xj + Yj) + (4i− 2n)Zj

]
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Applying the summation formulas of Lemma 2.4 gives

APk = −(n− 2k − 1)(n− 2k − 2)(k − 2)Zn−k − (n− 2k − 1)(n− 2k − 2)

k∑
i=0

[
Xj + Yj

]
+

n−k−1∑
i=k+1

[
(2i− n)(n− i− 2)(Xi + Yi) + 2(i− k − 1)(n− i− 2)Zi

]

+

k∑
j=0

[
(n− 2k − 1)(n− 2k − 2)(Xj + Yj)

]

+

n−k−1∑
j=k+1

[
(2j − n)(k + j − n)(Xj + Yj) + 2(j − n+ k)(j − 1− k)Zj

]
= −(n− 2k − 1)(n− 2k − 2)(k − 2)Zn−k

+

n−k−1∑
i=k+1

[
(2i− n)(k − 2)(Xi + Yi) + 2(i− k − 1)(k − 2)Zi

]

= (k − 2)

(
−(n− 2k − 1)(n− 2k − 2)Zn−k +

n−k−1∑
i=k+1

[
(2i− n)(Xi + Yi) + 2(i− k − 1)Zi

])
= (k − 2)Pk

verifying that Pk is an eigenvector, as desired.
Consider the vectors Pk, σ(Pk), σ2(Pk) as elements of the vector space RBn,

expanded in terms of the basis B′n (see Prop. 2.7). In these expansions, the basis
vectors Zn−k, Xn−k, Yn−k occur with nonzero coefficients only in Pk, σ(Pk),
σ2(Pk) respectively. This shows that these three vectors are linearly independent.
On the other hand, ρ(Pk) = Pk, so the S3-orbit of Pk has dimension 3. �

Define

Qk := (n− 2k + 1)(n− 2k + 2)Zk

+

n−k∑
j=k

[
(2j − n)(Xj + Yj)− 2(n− j − k + 1)Zj

]
(2.2a)

= (n− 2k + 1)(n− 2k)Zk + (2k − n)(Xk + Yk)

+

n−k∑
j=k+1

[
(2j − n)(Xj + Yj)− 2(n− j − k + 1)Zj

]
. (2.2b)

Both of these expressions for Qn will be useful in what follows.

Proposition 2.10. For all integers k with 0 ≤ k ≤ bn−22 c, the vector Qk is a
nonzero eigenvector of A with eigenvalue n− k − 2. Moreover, the S3-orbit of Qk

has dimension 3.

Proof. The statement is vacuously true if n < 2. By (2.2a), the coefficient of Zk
in Qk is (n − 2k + 1)(n − 2k). Provided that k ≤ bn−12 c, we have n > 2k, so this
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coefficient is nonzero, as is the vector Qk. Applying (2.1c). . . (2.1e), we have

AQk = (n− 2k + 1)(n− 2k + 2)

(n− k − 2)Zk +

n−k∑
j=0

[
Xj + Yj

]
+

n−k∑
i=k

(2i− n)

(n− i− 2)(Xi + Yi) +

n−i∑
j=0

[
Xj + Yj + 2Zj

]
−2(n− i− k + 1)

(n− i− 2)Zi +

n−i∑
j=0

[
Xj + Yj

]
= (n− 2k + 1)(n− 2k + 2)(n− k − 2)Zk + (n− 2k + 1)(n− 2k + 2)

n−k∑
j=0

[
Xj + Yj

]

+

n−k∑
i=k

[
(2i− n)(n− i− 2)(Xi + Yi)− 2(n− i− k + 1)(n− i− 2)Zi

]
+

n−k∑
i=k

n−i∑
j=0

[
(2i− n)(Xj + Yj + 2Zj)− 2(n− i− k + 1)(Xj + Yj)

]

Interchanging the order of summation in the double sum gives

AQk = (n− 2k + 1)(n− 2k + 2)(n− k − 2)Zk + (n− 2k + 1)(n− 2k + 2)

n−k∑
j=0

[
Xj + Yj

]

+

n−k∑
j=k

[
(2j − n)(n− j − 2)(Xj + Yj)− 2(n− j − k + 1)(n− j − 2)Zj

]

+

k−1∑
j=0

n−k∑
i=k

[
(4i− 2n)Zj + (4i− 3n+ 2k − 2)(Xj + Yj)

]

+

n−k∑
j=k

n−j∑
i=k

[
(4i− 2n)Zj + (4i− 3n+ 2k − 2)(Xj + Yj)

]
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Applying the summation formulas of Lemma 2.5 gives

AQk = (n− 2k + 1)(n− 2k + 2)(n− k − 2)Zk + (n− 2k + 1)(n− 2k + 2)

n−k∑
j=0

[
Xj + Yj

]

+

n−k∑
j=k

[
(2j − n)(n− j − 2)(Xj + Yj)− 2(n− j − k + 1)(n− j − 2)Zj

]

−
k−1∑
j=0

[
(n− 2k + 1)(n− 2k + 2)(Xj + Yj)

]

+

n−k∑
j=k

[
2(j − k)(−n+ j + k − 1)Zj + (2j + 2− 4k + n)(−n+ j + k − 1)(Xj + Yj)

]
= (n− 2k + 1)(n− 2k + 2)(n− k − 2)Zk

+

n−k∑
j=k

[
(n− k − 2)(2j − n)(Xj + Yj)− 2(n− j − k + 1)(n− k − 2)Zj

]

= (n− k − 2)

(n− 2k + 1)(n− 2k + 2)Zk +

n−k∑
j=k

[
(2j − n)(Xj + Yj)− 2(n− j − k + 1)Zj

]
= (n− k − 2)Qk

as desired.
We now show that the S3-orbit of Qk has dimension 3. Since ρ(Qk) = Qk, the

orbit is spanned by the three vectors Qk, σ(Qk), σ2(Qk). We consider two cases:
k = 0 and k > 0.

First, if k = 0, then the expression (2.2a) for Q0 becomes (using Lemma 2.2)

Q0 = (n+ 1)(n+ 2)Z0 +

n∑
j=0

[
(2j − n)(Xj + Yj)− 2(n− j + 1)Zj

]
= (n+ 1)(n+ 2)Z0 −

n∑
j=0

[
n(Xj + Yj) + (2n+ 2)Zj

]
+ 2

n∑
j=0

j
[
Xj + Yj + Zj

]
= (n+ 1)(n+ 2)Z0 − (4n+ 2)J + 2nJ = (n2 + 3n+ 2)Z0 − (2n+ 2)J

=
∑
i+j=n

(n2 + n)eij0 +
∑

i,j,k : k 6=0

(−2n− 2)eijk.

Accordingly we have

σ(Q0) =
∑

j+k=n

(n2 + n)e0jk +
∑

i,j,k : i6=0

(−2n− 2)eijk,

σ2(Q0) =
∑
i+k=n

(n2 + n)ei0k +
∑

i,j,k : j 6=0

(−2n− 2)eijk.
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Consider the N × 3 matrix with columns Q0, σ(Q0), σ2(Q0). By the previous
calculation, the 3× 3 minor in rows en00, e0n0, e00n is∣∣∣∣∣∣

n2 + n −2n− 2 n2 + n
n2 + n n2 + n −2n− 2
−2n− 2 n2 + n n2 + n

∣∣∣∣∣∣ = −2(n+ 1)3(n+ 2)2(n− 1)

which is nonzero (recall that n ≥ 2, otherwise the proposition is vacuously true).
On the other hand, if 0 < k ≤ b(n−2)/2c, then (2.2b) expresses Qk, σ(Qk), σ2(Qk)

as column vectors in the basis B′n. Let a = 2k − n and b = (n − 2k)(n − 2k + 1);
then the 3× 3 minor in rows Xk,Yk,Zk is∣∣∣∣∣∣

a a b
a b a
b a a

∣∣∣∣∣∣ = (2k − n)3(n− 2k − 1)(n− 2k + 2)2

which is nonzero because the assumption k ≤ b(n− 2)/2c implies n ≥ 2k + 2. �

To sum up the results of Section 2, we have constructed an explicit decomposition
of RN into eigenspaces of A(3, n) (equivalently, L(3, n)). The eigenvectors are the
hexagon vectors Ha,b,c and the special vectors J, R, Pk and Qk and their S3-orbits.

3. Simplicial rook graphs in arbitrary dimension

We now consider the graph SR(d, n) for arbitrary d and n, with adjacency matrix

A = A(d, n). Recall that SR(d, n) has N :=
(
n+d−1
d−1

)
vertices and is regular of

degree (d − 1)n. If two vertices a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ V (d, n) differ
only in their ith and jth positions (and are therefore adjacent), we write a ∼

i,j
b.

Let Sd be the symmetric group of order d, and let Ad ⊂ Sd be the alternating
subgroup. Let ε be the sign function

ε(σ) =

{
1 for σ ∈ Ad,

−1 for σ 6∈ Ad.

Let τij ∈ Sd denote the transposition of i and j. Note that Sd = Ad ∪ Adτij for
each i, j.

In analogy to the vectors X,Y,Z used in the d = 3 case, define

X(i,j)
α = eα +

∑
β: β∼

i,j
α

eβ . (3.1)

That is, X
(i,j)
α is the characteristic vector of the lattice line through α in direction

ei − ej . In particular, if α ∼
i,j
β, then X

(i,j)
α = X

(i,j)
β . Moreover, the column of A

indexed by α is

Aeα = −
(
d

2

)
eα +

∑
1≤i<j≤d

X(i,j)
α . (3.2)

since eα itself appears in each summand X
(i,j)
α .
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Figure 3. A permutohedron vector (n = 6, d = 4).

3.1. Permutohedron vectors. We now generalize the construction of hexagon
vectors to arbitrary dimension. The idea is that for each point p in the interior of
n∆d−1 and sufficiently far away from its boundary, there is a lattice permutohedron
centered at p, all of whose points are vertices of SR(d, n) (see Figure 3), and the
signed characteristic vector of this permutohedron is an eigenvector of A(d, n).

Proposition 3.1. Let p, w ∈ RN be vectors such that {p + σ(w) : σ ∈ Sd} are
distinct vertices of SR(d, n). (In particular, the entries of w must all be different.)
Define

Hp,w =
∑
σ∈Sd

ε(σ)ep+σ(w).

Then Hp,w is an eigenvector of A with eigenvalue −
(
d
2

)
. Moreover, for a fixed w,

the collection of all such eigenvectors Hp,w is linearly independent.

Proof. By linearity and (3.2), we have

AHp,w =
∑
σ∈Sd

ε(σ)

−(d
2

)
ep+σ(w) +

∑
1≤i<j≤d

X
(i,j)
p+σ(w)


= −

(
d

2

)
Hp,w +

∑
σ∈Sd

ε(σ)
∑

1≤i<j≤d

X
(i,j)
p+σ(w)

= −
(
d

2

)
Hp,w +

∑
1≤i<j≤d

∑
σ∈Sd

ε(σ)X
(i,j)
p+σ(w)

= −
(
d

2

)
Hp,w +

∑
1≤i<j≤d

∑
σ∈Ad

[
ε(σ)X

(i,j)
p+σ(w) + ε(στij)X

(i,j)
p+στij(w)

]
= −

(
d

2

)
Hp,w.
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(The summand vanishes because ε(σ) = −ε(στij) and because changing αi and αj

does not change X
(i,j)
α .) For linear independence, it suffices to observe that the

lexicographic leading term of Hp,w is ep+w̃, where w̃ denotes the unique increasing
permutation of w, and that these leading terms are different for different p. �

This result says that we can construct a large eigenspace by fitting many con-
gruent permutohedra into the dilated simplex. Depending on the parity of d, the
centers of these permutohedra will be points in Zd or (Z + 1

2 )d.

Let d be a positive integer. The standard offset vector in Rd is defined as

w = wd = ((1− d)/2, (3− d)/2, . . . , (d− 3)/2, (d− 1)/2) ∈ Rd. (3.3)

Note that w ∈ Zd if d is odd, and w ∈ (Z + 1
2 )d if d is even.

Proposition 3.2. There are (
n− (d−1)(d−2)

2

d− 1

)
distinct vectors p such that Hp,w is an eigenvector of A(d, n) (and these eigenvectors
are all linearly independent by Prop. 3.1).

Proof. First, suppose that d = 2c + 1 is odd. In order to satisfy the conditions of
Prop. 3.1, it suffices to choose a lattice point p = (a1, . . . , ad) so that

∑
ai = n and

c ≤ ai ≤ n−c for all i. Subtracting c from each ai gives a bijection to compositions
of n − cd with d nonnegative parts and no part greater than n − 2c (that latter
condition is extraneous for d ≥ 2). The number of these compositions is(

n− cd+ d− 1

d− 1

)
=

(
n− (d−1)(d−2)

2

d− 1

)
.

Second, suppose that d = 2c is even. Now it suffices to choose a point p =
(a1 + 1/2, . . . , ad + 1/2) ∈ (Z + 1

2 )d such that a1 + · · · + ad = n − c and, for
each i, ai + 1/2 + (1 − d)/2 ≥ 0 and ai + 1/2 + (d − 1)/2 ≤ n, that is, i.e.,
c− 1 ≤ a1 ≤ n− c. Subtracting c− 1 from each ai gives a bijection to compositions
of n − c − d(c − 1) = n − d(d − 1)/2 with d nonnegative parts, none of which can
be greater than n− d+ 1 (again, the last condition is extraneous). The number of
these compositions is(

n− d(d− 1)/2 + d− 1

d− 1

)
=

(
n− (d−1)(d−2)

2

d− 1

)
.

�

The permutohedron vectors account for “almost all” of the eigenvectors in the
following sense: if Hd,n ⊆ RN be the linear span of the eigenvectors constructed in
Props. 3.1 and 3.2, then for each fixed d, we have

lim
n→∞

dimHd,n
|V (d, n)|

= lim
n→∞

(n− (d−1)(d−2)
2

d−1
)(

n+d−1
d−1

) = 1. (3.4)

On the other hand, the combinatorial structure of the remaining eigenvectors is not
clear.

The next result is a partial generalization of Proposition 2.7.

Proposition 3.3. Every Hp,w is orthogonal to every X
(i,j)
α .
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Proof. By definition we have

X(i,j)
α ·Hp,w =

eα +
∑

β: β∼
i,j
α

eβ

 ·( ∑
σ∈Sd

ε(σ)ep+σ(w)

)
=

∑
σ: p+σ(w)∼

i,j
α

ε(σ).

The index set of this summation admits the fixed-point-free involution (β, σ) ↔
(τβ, τσ), and ε(τσ) = −ε(σ), so the sum is zero. �

Geometrically, Proposition 3.3 says that if a lattice line meets a lattice permu-
tohedron of the form of Prop. 3.1, then it does so in exactly two points, whose
corresponding permutations have opposite signs.

Conjecture 3.4. The vectors X
(i,j)
α span the orthogonal complement of Hd,n.

This conjecture is equivalent to the statement that every other eigenvector of

A(d, n) can be written as a linear combination of the X
(i,j)
α . For n <

(
d
2

)
, the

conjecture is that the X
(i,j)
α span all of RN . We have verified this statement com-

putationally for d = 4 and n ≤ 11, and for d = 5 and n = 7, 8, 9. Part of the

difficulty is that it is not clear what subset of the X
(i,j)
α ought to form a basis (in

contrast to the case d = 3, where B′n is a natural choice of basis; see Prop. 2.7).

3.2. The smallest eigenvalue. For a matrix M with real spectrum, let τ(M) de-
note its smallest eigenvalue, and for a graph H, let τ(G) = τ(A(G)). The invariant
τ(G) of a graph is important in spectral graph theory; for instance, it is related to
the independence number [8, Lemma 9.6.2].

Proposition 3.5. Suppose that d ≥ 1 and n ≥
(
d
2

)
. Then τ(SR(d, n)) = −

(
d
2

)
.

Proof. By the construction of Proposition 3.2, there is at least one eigenvector
with eigenvalue −

(
d
2

)
when n ≥

(
d
2

)
. The following argument that −

(
d
2

)
is in fact

the smallest eigenvalue was suggested to the authors by Noam Elkies. The edges
of SR(d, n) in direction (i, j) form a spanning subgraph SR(d, n)i,j isomorphic to
Kn+1 +Kn +Kn−1 + · · ·+K1, where + means disjoint union. The eigenvalues of
Kn are n− 1 and −1, and the spectrum of G+H is the union of the spectra of G
and H, so τ(SR(d, n)i,j) = −1. Since the edge set of SR(d, n) is the disjoint union
of the edge sets of the SR(d, n)i,j , we have A(d, n) =

∑
(i,j)A(SR(d, n)i,j), and in

general τ(M +N) ≥ τ(M) + τ(N), so τ(SR(d, n)) ≥ −
(
d
2

)
as desired. �

The case n <
(
d
2

)
is more complicated. Experimental evidence indicates that

the smallest eigenvalue of SR(d, n) is −n, and moreover that the multiplicity of
this eigenvalue equals the number M(d, n) of permutations in Sd with exactly
n inversions. The numbers M(d, n) are well known in combinatorics as the Ma-
honian numbers, or as the coefficients of the q-factorial polynomials; see [15, se-
quence #A008302]. In the rest of this section, we construct M(d, n) linearly inde-
pendent eigenvectors of eigenvalue −n; however, we do not know how to rule out
the possibility of additional eigenvectors of equal or smaller eigenvalue

We review some basics of rook theory; for a general reference, see, e.g., [5]. For a
sequence of positive integers c = (c1, . . . , cd), the skyline board Sky(c) consists of a
sequence of d columns, with the ith column containing ci squares. A rook placement
on Sky(c) consists of a choice of one square in each column. A rook placement is
proper if all d squares belong to different rows.
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An inversion of a permutation π = (π1, . . . , πd) ∈ Sd is a pair i, j such that
i < j and πi > πj . Let Sd,n denote the set of permutations of [d] with exactly n
inversions.

Definition 3.6. Let π ∈ Sd,n. The inversion word of π is a = a(π) = (a1, . . . , ad),
where

ai = #{j ∈ [d] : i < j and πi > πj}.
Note that a is a weak composition of n with d parts, hence a vertex of SR(d, n).
A permutation σ ∈ Sd,n is π-admissible if σ is a proper skyline rook placement on
Sky(a1 + 1, . . . , ad + d); that is, if

x(σ) = a(π) + w − σ(w) = a(π) + id−σ

is a lattice point in n∆d−1. Note that the coordinates of x(σ) sum to n, so admis-
sibility means that its coordinates are all nonnegative. The set of all π-admissible
permutations is denoted Adm(π); that is,

Adm(π) = {σ ∈ Sd : ai − σi + i ≥ 0 ∀i = 1, . . . , d}.

The corresponding partial permutohedron is

Parp(π) = {x(σ) : σ ∈ Adm(π)}.

That is, Parp(π) is the set of permutations corresponding to lattice points in the
intersection of n∆d−1 with the standard permutohedron centered at a(π)+w. The
partial permutohedron vector is the signed characteristic vector of Parp(π), that is,

Fπ =
∑

σ∈Parp(π)

ε(σ)ex(σ).

Example 3.7. Let d = 4 and π = 3142 ∈ Sd. Then π has n = 3 inversions, namely
12, 14, 34. Its inversion word is accordingly a = (2, 0, 1, 0). The π-admissible
permutations are the proper skyline rook placements on Sky(2+1, 0+2, 1+3, 0+4) =
Sky(3, 2, 4, 4), namely 1234, 1243, 2134, 2143, 3124, 3142, 3214, 3241 (see Figure 4).
The corresponding lattice points x(σ) can be read off from the rook placements by
counting the number of empty squares above each rook, obtaining respectively 2010,
2001, 1110, 1101, 0120, 0102, 0030, 0003; these are the neighbors of a in Parp(π).
Thus Fπ = e2010−e2001−e1110 +e1101 +e0120−e0102−e0030 +e0003; see Figure 5.

Figure 4. Rook placements on the skyline board Sky(3, 2, 4, 4).

Theorem 3.8. Let π ∈ Sd,n and A = A(d, n). Then Fπ is an eigenvector of A with

eigenvalue −n. Moreover, for every pair d, n with n <
(
d
2

)
, the set {Fπ : π ∈ Sd,n}

is linearly independent. In particular, the dimension of the (−n)-eigenspace of A
is at least the Mahonian number M(d, n).
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Figure 5. The partial permutohedron Parp(3142) in SR(4, 3).

Proof. First, we show that the Fπ are linearly independent. This follows from the
observation that the lexicographically leading term of Fπ is ea(π), and these terms
are different for all π ∈ Sd,n.

Second, let σ ∈ Adm(π). Then the coefficient of ex(σ) in Fπ is ε(σ) ∈ {1,−1}.
We will show that the coefficient of ex(σ) in AFπ is −nε(σ), i.e., that

ε(σ)
∑
ρ

ε(ρ) = −n, (3.5)

the sum over all ρ such that ρ ∼ σ and ρ ∈ Parp(π). (Here and subsequently,
∼ denotes adjacency in SR(d, n).) Each such rook placement ρ is obtained by
multiplying σ by the transposition (i j), that is, by choosing a rook at (i, σi),
choosing a second rook at (j, σj) with σj > σi, and replacing these two rooks with
rooks in positions (i, σj) and (j, σi). For each choice of i, there are (ai + i) − σi
possible j’s, and

∑
i(ai + i− σi) = n. Moreover, the sign of each such ρ is opposite

to that of σ, proving (3.5).
Third, let y = (y1, . . . , yd) ∈ V (d, n) \ Parp(π). Then the coefficient of ex(σ) in

Fπ is 0. We will show that the coefficient of ex(σ) in AFπ is also 0, i.e., that∑
σ∈N

ε(σ) = 0. (3.6)

where N = {ρ : x(ρ) ∼ y} ∩ Parp(π). In order to prove this, we will construct a
sign-reversing involution on N .

Let a = a(π) and let b = (b1, . . . , bd) = (a1 + 1− y1, a2 + 2− y2, . . . , ad + d− yd).
Note that bi ≤ ai + i for every i; therefore, we can regard b as a rook placement on
Sky(a1 +1, . . . , ad+d). (It is possible that bi ≤ 0 for one or more i; we will consider
that case shortly.) To say that y 6∈ Fπ is to say that b is not a proper π-skyline rook

placement; on the other hand, we have
∑
bi =

(
d+1
2

)
(as would be the case if b were

proper). Hence the elements of N are the proper π-skyline rook skyline placements
obtained from b by moving one rook up and one other rook down, necessarily by
the same number of squares. Let b(i ↑ q, j ↓ r) denote the rook placement obtained
by moving the ith rook up to row q and the jth rook down to row r.

We now consider the various possible ways in which b can fail to be proper.
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Case 1: bi ≤ 0 for two or more i. In this case N = ∅, because moving only one
rook up cannot produce a proper π-skyline rook placement.

Case 2: bi ≤ 0 for exactly one i. The other rooks in b cannot all be at different
heights, because that would imply that

∑
bi ≤ 0+(2+ · · ·+d) <

(
d+1
2

)
. Therefore,

either N = ∅, or else bj = bk for some j, k and there are rooks at all heights except
q and r for some q, r < bj = bk.

Then b(i ↑ q, j ↓ r) is proper if and only if b(i ↑ q, k ↓ r) is proper, and likewise
b(i ↑ r, j ↓ q) is proper if and only if b(i ↑ r, k ↓ q) is proper. Each of these pairs is
related by the transposition (j k), so we have the desired sign-reversing involution
on N .

Case 3: bi ≥ 1 for all i. Then the reason that b is not proper must be that
some row has no rooks and some row has more than one rook. There are several
subcases:

Case 3a: For some q 6= r, there are two rooks at height q, no rooks at height
r, and one rook at every other height. But this is impossible because then

∑
bi =(

d+1
2

)
+ q − r 6=

(
d+1
2

)
.

Case 3b: There are four or more rooks at height q, or three at height q and two
or more at height r. In both cases N = ∅.

Case 3c: We have bi = bj = bk; no rooks at heights q or r for some q < r; and
one rook at every other height. Then

N ⊆
{
b(i ↑ r, j ↓ q), b(j ↑ r, i ↓ q), b(k ↑ r, i ↓ q),
b(i ↑ r, k ↓ q), b(j ↑ r, k ↓ q), b(k ↑ r, j ↓ q).

}
For each column of the table above, its two rook placements are related by a
transposition (e.g., (j k) for the first column) and either both or neither of those
rook placements are proper (e.g., for the first column, depending on whether or not
bi ≤ r). Therefore, we have the desired sign-reversing involution on N .

Case 3d: We have bi = bj = q; bk = b` = r, and one rook at every other height
except heights s and t. Now the desired sign-reversing involution on N is toggling
the rook that gets moved down; for instance, b(j ↑ s, k ↓ t) is proper if and only if
b(j ↑ s, ` ↓ t) is proper.

This completes the proof of (3.6), which together with (3.5) completes the proof
that Fπ is an eigenvector of A(d, n) with eigenvalue −n. �

Conjecture 3.9. If n ≤
(
d
2

)
, then in fact τ(SR(d, n)) = −n, and the dimension of

the corresponding eigenspace is the Mahonian number M(d, n).

We have verified this conjecture, using Sage, for all d ≤ 6. It is not clear in
general how to rule out the possibility of a smaller eigenvalue, or of additional
(−n)-eigenvectors linearly independent of the Fπ.

The proof of Theorem 3.8 implies that every partial permutohedron Parp(π)
induces an n-regular subgraph of SR(d, n). Another experimental observation is
the following:

Conjecture 3.10. For every π ∈ Sd,n, the induced subgraph SR(d, n)|Parp(π) is
Laplacian integral.

We have verified this conjecture, using Sage, for all permutations of length d ≤ 6.
We do not know what the eigenvalues are, but these graphs are not in general
strongly regular (as evidenced by the observation that they have more than 3 dis-
tinct eigenvalues).
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4. Corollaries, alternate methods, and further directions

4.1. The independence number. The independence number of SR(d, n) can be
interpreted as the maximum number of nonattacking “rooks” that can be placed on
a simplicial chessboard of side length n+1. By [8, Lemma 9.6.2], the independence
number α(G) of a δ-regular graph G on N vertices is at most −τN/(δ − τ), where
τ is the smallest eigenvalue of A(G). For d = 3 and n ≥ 3, we have τ = −3, which
implies that the independence number α(SR(d, n)) is at most 3(n+2)(n+1)/(4n+
6). This is of course a weaker result (except for a few small values of n) than the
exact value b(3n+ 3)/2c obtained in [13] and [2].

Question 4.1. What is the independence number of SR(d, n)? That is, how many
nonattacking rooks can be placed on a simplicial chessboard?

Proposition 3.5 implies the upper bound

α(SR(d, n)) ≤ d(d+ 1)

(2n+ d)(d− 1)

(
n+ d− 1

d− 1

)
for n ≥

(
d
2

)
, but this bound is not sharp (for example, the bound for SR(4, 6) is

α ≤ 21, but computation indicates that α = 16).

4.2. Equitable partitions. One approach to determining the spectrum of a graph
uses the theory of interlacing and equitable partitions [9], [8, chapter 9]. Let X =
{O1, . . . , Ok} be the set of orbits of vertices of G under the group of automorphisms
of G. For each two orbits Oi, Oj , define f(i, j) = |N(x) ∩ Oj | for any x ∈ Oi.
The choice of x does not matter, so that the function f is well-defined (albeit not
necessarily symmetric); that is to say, the orbits form an equitable partition of V (G).
Let P (G) be the k × k square matrix with entries f(i, j). Then every eigenvalue
of P is also an eigenvalue of A(G) [8, Thm. 9.3.3].

When G = SR(n, d), the spectrum of P (G) is typically a proper subset of that
of A(G). For example, when n = 3 and d = 3, the matrix A(G) has spectrum
6, 1, 1, 1, 0, 0,−2,−2,−2,−3 by Theorem 1.1, but the automorphism group has only
three orbits, so P (G) is a 3 × 3 matrix and must have a strictly smaller set of
eigenvalues. In fact its spectrum is 6, 1,−2, which is not a tight interlacing of that
of A(G) in the sense of Haemers.

Therefore, these methods may not be sufficient to describe the spectrum of
SR(n, d) in general. On the other hand, in all cases we have checked computa-
tionally (d = 4, n ≤ 30; d = 5, n ≤ 25), the matrices P (SR(n, d)) have integral
spectra, which is consistent with Conjecture 1.3.

Question 4.2. Is SR(d, n) determined up to isomorphism by its spectrum?

For SR(3, 3), the answer to the question is “yes,” for the following reason. A reg-
ular graph is integral if and only if its complement is integral, by [8, Lemma 8.5.1].

Thus the complement SR(3, 3) is 3-regular and integral. There are exactly thirteen
such graphs, as classified by Bussemaker, Cvetković, and Schwenk [4, 6, 14]; see

also [1, pp. 50–51]. Only two of these have ten vertices, namely SR(3, 3) and the
Petersen graph, which are not cospectral. For more on the general problem of which
graphs are determined by their spectra, see [18, 19].
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