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Chromatic Symmetric Functions of Graphs

Let G = (V, E) be a simple graph with V = [n] = {1,...,n}.
proper coloring: f : V — Ny with f(i) # f(j) whenever ij € E

chromatic symmetric function (CSF): the power series

XG :XG(X]_7X2’...) = Z Xf(l)"'xf(n)-

f: V—>N>0
proper

» Symmetric and homogeneous of degree n

» Generalizes the chromatic polynomial:

XG(lk, 0°°) = number of proper k-colorings
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Chromatic Symmetric Functions of Graphs

» Introduced by Stanley in 1995

» Related invariants: Tutte symmetric function /
U-polynomial (Noble-Welsh 1999), matroid quasisymmetric
function (Billera—Jia—Reiner 2009)

» Analogues: noncommutative CSFs (Gebhard-Sagan 2001),
quasisymmetric CSFs (Shareshian-Wachs 2016), ...

» Applications: combinatorial Hopf algebras
(Aguiar-Bergeron—Sottile 2006), cohomology of Hessenberg
subvarieties of flag manifolds (Shareshian-Wachs 2012)
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Describing CSFs Finitely

Let G =(V,E) beagraph, n=|V|, ACE
type of A = partition of n whose parts are component sizes of G|a

—o (5
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Describing CSFs Finitely

Let G =(V,E) beagraph, n=|V|, ACE
type of A = partition of n whose parts are component sizes of G|a

—o (5

A

type(A) = (6,3,2,2,1,1,1)

Theorem (Stanley 1995 / JLM-Morin—-Wagner 2008)
The CSF of a tree T is determined by the type numbers

ax(T) = #{A C E | type(A) = A}

for all partitions A of n.
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Distinguishing Trees with the CSF

Example: The two trees with n = 4 are the path and the star.

path star

Type numbers ¢, (T):

2 (L1111 (2,11) (2,2) (3,1) (4)]
path 1 3 1 2 1
star 1 3 0 3 1

In fact X+ # X1 for all non-isomorphic trees T, T’ with n < 29
[Heil-Ji 2019]
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Stanley’s Uniqueness Problem

Question (Stanley)
Is a tree uniquely determined up to isomorphism by its CSF?

l.e., if T, T are non-isomorphic trees, must X(T) # X(T')?

Or, stated more broadly:
Can the local structure of a tree be recovered from global data?
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Stanley’s Uniqueness Problem

Question (Stanley)
Is a tree uniquely determined up to isomorphism by its CSF?

l.e., if T, T are non-isomorphic trees, must X(T) # X(T')?

Or, stated more broadly:
Can the local structure of a tree be recovered from global data?

» There are infinitely many pairs of non-acyclic graphs with the
same CSFs [Orellana—Scott 2016].

> All trees on n vertices have the same chromatic polynomial;
the CSF is much stronger.
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Numerical Tree Invariants

Numerical data sets associated with a tree T = (V, E):

» type numbers (from CSF)
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Numerical Tree Invariants

Numerical data sets associated with a tree T = (V, E):

v

type numbers (from CSF)

v

vertex sets U C V with a vertices, b external
edges, and c internal edges

» subtrees S with g edges and r external edges

» subtrees S with g edges and s leaves

» vertices of degree d @s

» paths of length ¢ == external edges
© leaves

Which of these data sets determine the others?

7/17



Relationships Between Tree Invariants

chromatic symmetric function/
type numbers

vertex sets (size, internal
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chromatic symmetric function/
type numbers

conjectured
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vertex sets (size, internal

edges, external edges)

A/e&/
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JLM-Morin—-Wagner '08

Wang-Yu-Zhang '23

Aliste-Prieto—JLM—-Wagner—Zamora '24

> ’subtrees (edges and leaves) ‘

/N

degree distance
numbers numbers

8/17



Crew's Conjecture: Obtaining the GDP from the CSF

Theorem [Aliste-Prieto, JLM, Wagner, Zamora 2024]

The CSF determines the vertex set data linearly.
That is, for every tree T, the numbers

fr(a,b,c) :=#{ACV(T): |Al=a, d(A) = b, e(A) =c}

(where d(A) and e(A) are the numbers of external and internal
edges) are given by the formula

fT(aa ba C) = Z C)\(T)w()" a, bv C)
Abn

where w(\, a, b, ¢) are integers defined independently of T.

Similarly, the two sets of subtree data are linearly equivalent.
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Overview of the Proof of Crew's Conjecture

1. Compute the matrices of coefficients

X=[ex(Mlrern, arn G =l[gr(a, b, )l 1T, Arn

for n < 7 or so.

2. Solve the matrix equation XQ = G for Q (there will be a large
solution space).

3. Find a needle matrix Q in the haystack solution space whose
entries have a predictable combinatorial form.

4. Finish the proof (which mixes algebra and combinatorics).

The proof of equivalence of the two subtree data sets is analogous.
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Caterpillars

A tree is a caterpillar if deleting all its leaves produces a path.

MU T TAT A

C(3,3,1,2,2) C(2,3,2,1,3)

Caterpillars are indexed by compositions with both first and last
parts > 1, up to reversal.

Eisenstat and Gordon conjectured that for gap-free polynomials
p(x), the caterpillars arising from (a + bx)p(x) and (b + ax)p(x)
have the same edge/leaf subtree data.

2+ 1)1 +x+x3) =2+ 3x + x> + 23 + 1x* ~ (3,3,1,2,2)
(T4+2x)(1+x+x3) =1+3x+2x% + x>+ 2x* ~ (2,3,2,1,3)
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Caterpillars and Unique Factorization

For compositions a = (a1, ...,ax) and = (b1, ..., bm), define

OZ-B:(al,...7ak,b1,...,bm)
a@ﬁ:(al,...,ak_l,ak+b1,b2,...,bm)
aof=p0%. 0. 30K

Example
(2,1)0(2,1) = (2,1)9% - (2,1)®' = ( )-(2,1)=(2,3,1,2,1)
(2,1)0(1,2) = (1,2)9?-(1,2)®* = (1,3,2) - (1,2) = (1,3,2,1,2)

Fact [Billera—Thomas—van Willigenburg 2006]

Every composition o admits a unique irreducible factorization

= X1 O O0:---00k.

12/17



The Eisenstat-Gordon Conjecture

Theorem [Aliste-Prieto, JLM, Wagner, Zamora 2024]
Reversing any of the irreducible factors in 1 ©® a ® 1 produces a

caterpillar with the same edge/leaf subtree counts.

For example,

{(2, 1)0(2,1) =(2,3,1,2,1)

C(3,3,1,2,2) = C(2,3,2,1,3).
(1,2) = (1,3,2,1,2)

N
—_

~—
o

In particular, if « has k irreducible factors then C(1 ® a® 1) is one
of at least 2¥~1 non-isomorphic caterpillars with the same subtree
polynomial.

The case k = 2 implies the Eisenstat-Gordon conjecture.
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Further Questions

Question 1: Does factorization extend from caterpillars to more
general trees?
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Further Questions

Question 1: Does factorization extend from caterpillars to more
general trees?

Question 2: It is natural to consider the combined subtree data

{#subtrees S with g edges, r external edges, s leaves: g, r,s € N}.

® S
=== external edges
© leaves

» This three-parameter subtree data is strictly stronger than
either two-parameter data set

» Does it distinguish trees?
» Can we recover it from the CSF? (If so, not linearly.)
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Thank you!
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Okay, You Asked For It

w() a, b, c) )y (a_ )(2) <n _,,eﬁti(ﬁ)l_ a)

puha

where £(\) means the length (= number of parts) of A, and

A\ f[ # of parts of A equal to i
u) # of parts of u equal to /

i=1
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