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Chromatic Symmetric Functions of Graphs

Let G = (V ,E ) be a simple graph with V = [n] = {1, . . . , n}.

proper coloring: f : V → N>0 with f (i) ̸= f (j) whenever ij ∈ E

chromatic symmetric function (CSF): the power series

XG = XG (x1, x2, . . . ) =
∑

f :V→N>0
proper

xf (1) · · · xf (n).

▶ Symmetric and homogeneous of degree n

▶ Generalizes the chromatic polynomial:

XG (1
k , 0∞) = number of proper k-colorings

2 / 17



Chromatic Symmetric Functions of Graphs

▶ Introduced by Stanley in 1995

▶ Related invariants: Tutte symmetric function /
U-polynomial (Noble–Welsh 1999), matroid quasisymmetric
function (Billera–Jia–Reiner 2009)

▶ Analogues: noncommutative CSFs (Gebhard–Sagan 2001),
quasisymmetric CSFs (Shareshian–Wachs 2016), . . .

▶ Applications: combinatorial Hopf algebras
(Aguiar–Bergeron–Sottile 2006), cohomology of Hessenberg
subvarieties of flag manifolds (Shareshian–Wachs 2012)
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Describing CSFs Finitely

Let G = (V ,E ) be a graph, n = |V |, A ⊆ E
type of A = partition of n whose parts are component sizes of G |A

G

A

type(A) = (6, 3, 2, 2, 1, 1, 1)

Theorem (Stanley 1995 / JLM–Morin–Wagner 2008)
The CSF of a tree T is determined by the type numbers

cλ(T ) = #{A ⊆ E | type(A) = λ}

for all partitions λ of n.
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Distinguishing Trees with the CSF

Example: The two trees with n = 4 are the path and the star.

path star

Type numbers cλ(T ):

λ (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

path 1 3 1 2 1

star 1 3 0 3 1

In fact XT ̸= XT ′ for all non-isomorphic trees T ,T ′ with n ≤ 29
[Heil–Ji 2019]
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Stanley’s Uniqueness Problem

Question (Stanley)
Is a tree uniquely determined up to isomorphism by its CSF?

I.e., if T ,T ′ are non-isomorphic trees, must X (T ) ̸= X (T ′)?

Or, stated more broadly:
Can the local structure of a tree be recovered from global data?

▶ There are infinitely many pairs of non-acyclic graphs with the
same CSFs [Orellana–Scott 2016].

▶ All trees on n vertices have the same chromatic polynomial ;
the CSF is much stronger.
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Numerical Tree Invariants

Numerical data sets associated with a tree T = (V ,E ):

▶ type numbers (from CSF)

▶ vertex sets U ⊆ V with a vertices, b external
edges, and c internal edges

▶ subtrees S with q edges and r external edges

▶ subtrees S with q edges and s leaves

▶ vertices of degree d

▶ paths of length ℓ
U
internal edges
external edges

S
external edges
leaves

Which of these data sets determine the others?
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Relationships Between Tree Invariants

chromatic symmetric function/
type numbers

vertex sets (size, internal
edges, external edges)

subtrees (edges
and external edges)

subtrees (edges and leaves)

degree
numbers

distance
numbers

JLM–Morin–Wagner ’08
Wang-Yu-Zhang ’23
Aliste-Prieto–JLM–Wagner–Zamora ’24

easy

conjectured
by Crew 2022
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Crew’s Conjecture: Obtaining the GDP from the CSF

Theorem [Aliste-Prieto, JLM, Wagner, Zamora 2024]

The CSF determines the vertex set data linearly.
That is, for every tree T , the numbers

fT (a, b, c) := #{A ⊆ V (T ) : |A| = a, d(A) = b, e(A) = c}

(where d(A) and e(A) are the numbers of external and internal
edges) are given by the formula

fT (a, b, c) =
∑
λ⊢ n

cλ(T )ω(λ, a, b, c)

where ω(λ, a, b, c) are integers defined independently of T .

Similarly, the two sets of subtree data are linearly equivalent.
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Overview of the Proof of Crew’s Conjecture

1. Compute the matrices of coefficients

X = [cλ(T )]T∈Tn, λ⊢n G = [gT (a, b, c)]T∈Tn, λ⊢n

for n ≤ 7 or so.

2. Solve the matrix equation XΩ = G for Ω (there will be a large
solution space).

3. Find a needle matrix Ω in the haystack solution space whose
entries have a predictable combinatorial form.

4. Finish the proof (which mixes algebra and combinatorics).

The proof of equivalence of the two subtree data sets is analogous.
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Caterpillars

A tree is a caterpillar if deleting all its leaves produces a path.

C(3, 3, 1, 2, 2) C(2, 3, 2, 1, 3)

Caterpillars are indexed by compositions with both first and last
parts > 1, up to reversal.

Eisenstat and Gordon conjectured that for gap-free polynomials
p(x), the caterpillars arising from (a+ bx)p(x) and (b + ax)p(x)
have the same edge/leaf subtree data.

(2 + 1x)(1 + x + x3) = 2+ 3x + x2 + 2x3 + 1x4 ⇝ (3, 3, 1, 2, 2)

(1 + 2x)(1 + x + x3) = 1+ 3x + 2x2 + x3 + 2x4 ⇝ (2, 3, 2, 1, 3)
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Caterpillars and Unique Factorization

For compositions α = (a1, . . . , ak) and β = (b1, . . . , bm), define

α · β = (a1, . . . , ak , b1, . . . , bm)

α⊙ β = (a1, . . . , ak−1, ak + b1, b2, . . . , bm)

α ◦ β = β⊙a1 · β⊙a2 · · ·β⊙ak

Example

(2, 1) ◦ (2, 1) = (2, 1)⊙2 · (2, 1)⊙1 = (2, 3, 1) · (2, 1) = (2, 3, 1, 2, 1)
(2, 1) ◦ (1, 2) = (1, 2)⊙2 · (1, 2)⊙1 = (1, 3, 2) · (1, 2) = (1, 3, 2, 1, 2)

Fact [Billera–Thomas–van Willigenburg 2006]

Every composition α admits a unique irreducible factorization

α = α1 ◦ α2 ◦ · · · ◦ αk .
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The Eisenstat-Gordon Conjecture

Theorem [Aliste-Prieto, JLM, Wagner, Zamora 2024]

Reversing any of the irreducible factors in 1⊙ α⊙ 1 produces a
caterpillar with the same edge/leaf subtree counts.

For example,{
(2, 1) ◦ (2, 1) = (2, 3, 1, 2, 1)

(2, 1) ◦ (1, 2) = (1, 3, 2, 1, 2)
=⇒ C(3, 3, 1, 2, 2) = C(2, 3, 2, 1, 3).

In particular, if α has k irreducible factors then C(1⊙ α⊙ 1) is one
of at least 2k−1 non-isomorphic caterpillars with the same subtree
polynomial.

The case k = 2 implies the Eisenstat-Gordon conjecture.
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Further Questions

Question 1: Does factorization extend from caterpillars to more
general trees?

Question 2: It is natural to consider the combined subtree data

{#subtrees S with q edges, r external edges, s leaves : q, r , s ∈ N}.

S
external edges
leaves

▶ This three-parameter subtree data is strictly stronger than
either two-parameter data set

▶ Does it distinguish trees?

▶ Can we recover it from the CSF? (If so, not linearly.)

14 / 17



Further Questions

Question 1: Does factorization extend from caterpillars to more
general trees?

Question 2: It is natural to consider the combined subtree data

{#subtrees S with q edges, r external edges, s leaves : q, r , s ∈ N}.

S
external edges
leaves

▶ This three-parameter subtree data is strictly stronger than
either two-parameter data set

▶ Does it distinguish trees?

▶ Can we recover it from the CSF? (If so, not linearly.)

14 / 17



Thank you!
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Okay, You Asked For It

ω(λ, a, b, c) = (−1)n−b−1
∑
µ⊢ a

(
a− ℓ(µ)

c

)(
λ

µ

)(
n − ℓ(λ) + ℓ(µ)− a

n − b − c − 1

)

where ℓ(λ) means the length (= number of parts) of λ, and(
λ

µ

)
:=

n∏
i=1

(
# of parts of λ equal to i

# of parts of µ equal to i

)
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