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Spanning Trees

Let G = (V, E) be a graph (connected, finite, not necessarily
simple), with vertices V' = [n] and edges oriented arbitrarily.

Definition The signed incidence matrix 0 = 9(G) has rows
and columns corresponding to vertices and edges of G, with entries

+1 if v = head(e)
Ove=14 -1 if v=rtail(e)

)

0 if v eoreisa loop

Definition A spanning tree of G is a set of edges (or a
subgraph) corresponding to a column basis of 0.

7 (G) = set of spanning trees of G; 7(G) =|.7(G)|
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The Laplacian Matrix

Definition Let G be a connected graph with vertices

[n] ={1,...,n} and no loops. The Laplacian of G is the n x n
matrix L = 997 = [¢;]:
0. — deg¢ (/) if i =,
v —(number of edges between i and j) if i #j.

» [ is symmetric and positive semi-definite
» rankL=n-1
P ker L is spanned by the all-1's vector
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The Matrix-Tree Theorem

Matrix-Tree Theorem [Kirchhoff 1847]
(1) Let 0, A1, A2, ..., Ap—1 be the eigenvalues of L. Then the
number of spanning trees of G is

A2 Apa
===

7(6)

(2) Let 1 < i < n. Form the reduced Laplacian L; by deleting the

ith row and it" column of L. Then

7(G) = det L; .
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The Matrix-Tree Theorem: Proof Sketch

Proof Sketch:
> Note that L =997 and L; = 8,-8,-T.
» Column bases of 0 = spanning trees of G.
> Binet-Cauchy:

det(0;0]) = Y (detda)® = > (£1)* = 7(G).
ACE(T) Tec7(G)
|A|l=n—1
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Complete and Complete Bipartite Graphs

The complete graph K, has n vertices, with every pair connected
by one edge.
» Nonzero Laplacian spectrum: n"~!

» 7(K,) = n"~2 (Cayley’s formula)

The complete bipartite graph K, ; has p red vertices and q blue
vertices, with every red/blue pair connected by one edge.

» Nonzero Laplacian spectrum: (p + q)!p9~—1gP~!
> (k) = 7P

Both these formulas can also be obtained bijectively [classical]
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Hypercubes

The hypercube graph Q, has 2" vertices, labeled by strings of n
bits (0's and 1's), with two vertices adjacent if they agree in all but
one bit.

110 111

1 10 1
100 101
°
010 o011
o 00 o1

000 001

QU Ql QZ Q3

Theorem The eigenvalues of the Laplacian of Q, are
0,2,4,...,2n, with 2k having multiplicity (Z) Therefore,

7(Qn) =221 H k(5.

k=2

Combinatorial proof: [Bernardi '12]

7/40



Threshold Graphs

A graph G with vertex set {1,2,...,n} is a threshold graph if,
whenever ab is an edge, so is a'b’ for all 8/ < aand b’ < b.

Equivalently, the edges of G form an order ideal under
componentwise order.
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Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a
threshold graph G on vertices [n] are the columns X; of the
partition A = A(G) whose rows are the vertex degrees.

Corollary 7(G) = A5\, _;.
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Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a
threshold graph G on vertices [n] are the columns X; of the
partition A = A(G) whose rows are the vertex degrees.

Corollary 7(G) = A5\, _;.

AN 3
SONNYNNNNRNNN

Vertex degrees: 4, 4, 3, 3, 2
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Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a
threshold graph G on vertices [n] are the columns X; of the
partition A = A(G) whose rows are the vertex degrees.

Corollary 7(G) = A5+ X\, _;.

w
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PR Ry P e el

Laplacian eigenvalues: 5, 5, 4, 2, 0
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Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a
threshold graph G on vertices [n] are the columns X; of the
partition A = A(G) whose rows are the vertex degrees.

Corollary 7(G) = A5+ X\, _;.

w
PR SRy P S el
PR Sy P ey el
PR Ry P e el

t=5x4x2=40 Laplacian eigenvalues: 5, 5, 4, 2, 0
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Weighted Counting

G = (V,E) graph; {x. : e € E} commuting indeterminates

Weighted Laplacian [ = [{;]; jcv:

i [ Teixe if i =,
Y —YejXe fi#].

Reduced Laplacian L;: pick a vertex i; delete i row and it
column of L

Weighted Matrix-Tree Theorem

detl; = Z H Xe.

TeT(G) ecT
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Weighted Counting

Combinatorial information about .7(G) can be obtained by
specializing edge weights x.. Often, tree enumerators factor nicely.

» Complete graphs: xj = x;x; gives Cayley-Priifer formula

Z XngT(l) . .XSEgT(”) = xq-- 'Xn(Xl 4t Xn)n—z
Te7(Kn)

» Generalization to extended [Priifer] graphs [Kelmans '92]

» Threshold graphs [Remmel-Williamson '02, JLM—Reiner '03]:
factorization for bidegree generating function:

n—1 A
Z H XiYj = X1¥n H mein(i,r)ymax(i,r)
TeT(G) e=i<jeT r=2 \ i=1

» Hypercubes: different weighting factors [JLM-Reiner '03]
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Simplicial Complexes

A d-simplex is the convex hull of d + 1 general points in RI*1,

A

d=0 d=1 d=2

A simplicial complex is a space built (properly) from simplices.

VAVAVANRINY. Vi AN <
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Simplicial Complexes

A d-simplex is the convex hull of d + 1 general points in RI*1,

.,/.

d=0 d=1 d=2

A simplicial complex is a space built (properly) from simplices.

VAVAVANRNNY. VAN
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Simplicial Complexes

Combinatorially, a simplicial complex is a set family A C 2{1,2.-n}
such that if o € A and ¢’ C o, then o/ € A.

4 5 4 5
1 2 3 1 2 3
Ay = (12,14,24, 24,25, 35) A, = (124,245, 35)

faces or simplices: elements of A

dimension: dimo = |o| — 1

>

>

» facet: a maximal face

» pure complex: all facets have equal dimension
>

k-skeleton Ay = {0 € A: dimo < k}
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Simplicial Boundary Maps and Homology

Let A be a simplicial complex on vertices [n].
Write Ay for the set of k-dimensional faces.

The kth simplicial boundary matrix of A is

ak - ak(A) = [dp,a]pEAk,l,aeAk

where

d

_{(—1)f fo={w<wv<---<w}landp=0c\y
po =

0 ifpZo

Note: 0 is the signed incidence matrix of the 1-skeleton of A.

Fact: ker 0k 2O im Oy for all k.
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Simplicial Boundary Maps and Homology

Fact: ker Ok 2 im Oy for all k.

Definition For a ring R, the homology groups of A with
coefficients in R are defined by

Hi(A; R) = ker(dy; R) / im(dks1; R).

(Default: R=17.)

Homology groups are topological invariants.

> Fo(A;R) =0 <= A is connected
> Fi(A;R) =0 <= A is simply connected
> A is contractible = H,(A; R) =0 for all k, R
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Simplicial Spanning Trees

Definition Let A9 be a pure simplicial complex of dimension d.
A spanning tree (ST) is a complex T such that Ay_;) ST C A
and either of the following equivalent conditions hold:

1. The columns of 94(A) corresponding to faces of T form a
basis for its column space over Q

(i.e., T is a basis of the simplicial matroid of dy).
2. Hy(T;Q) =0 and Hy_1(T;Q) =0.
3. Hy(;Z) =0 and Ay_1(T;7Z) is finite.

As before, let 7 (A) denote the set of spanning trees of A.

Note that we are not defining 7(A) to be the cardinality of 7 (A)!
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Examples of STs

» dimA =1: 7 (A) = usual graph-theoretic spanning trees
» dimA =0: J(A) = vertices of A

> If A is contractible: it has only one ST, namely itself.

» Contractible complexes = acyclic graphs
> Some noncontractible complexes also qualify, notably RIP?

» If Ais a simplicial sphere: STs are A\ {o}, where 0 € A 'is
any facet (maximal face)

» Simplicial spheres are analogous to cycle graphs
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Examples of STs

Pop quiz: How many spanning trees does the equatorial bipyramid
A = (123,124,134,234,125,135,235) have?

4
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Examples of STs

Pop quiz: How many spanning trees does the equatorial bipyramid
A = (123,124,134,234,125,135,235) have?

4

1 3 Solution: 15.

e Either remove triangle 123 and any other triangle (6 STs). ..
e ...or one each “northern” and “southern” triangle (9 STs).
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Examples of STs

Pop quiz: How many spanning trees does the equatorial bipyramid

A = (123,124,134, 234,125,135, 235) have?

4 134
124
1 3 Solution: 15. 123
125
135
5

e Either remove triangle 123 and any other triangle (6 STs). ..
e ...or one each “northern” and “southern” triangle (9 STs).

234

235
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Torsion

If A'is a graph, then every spanning tree T € 7(A) is
contractible, hence Hy(T;Z) = 0.

On the other hand, if dim A = d > 2 then I:Id_l('T‘; Z) can be
nontrivial.

Example A = complete 2-dimensional complex on 6 vertices; T
= triangulation of RP2. Then

Ay (T Z) = 7.)27.

Geometrically: torsion suggests non-orientability.

Combinatorially: torsion affects the count of spanning trees.
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Simplicial Laplacians

Definition Updown Laplacian matrix of A in dimension k — 1:
L4 (8) = 9,9

» L44(A) is the usual graph Laplacian (rows/columns indexed
by vertices).

> LY (A) is a symmetric square matrix with rows/columns
indexed by p,m € Ay_1:

#{oeAy | 0Dp} ifp=m,
lpn=1< %1 if p,m lie in a common k-face,
0 otherwise

Reduced Laplacian L1(A): pick a (k — 1)-tree T and delete
rows,/columns corresponding to its facets
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The Simplicial Matrix-Tree Theorem

Simplicial Matrix-Tree Theorem
(Bolker, Kalai, Adin, Duval-Klivans-JLM, ...)

The “number” of spanning trees of A? is

ef ~ A ¢’ pdet L
ma(B) ST A (TP = cdetly = SPES
TeT (D)

» If d =1 (graphs) then all summands are 1

» pdet M = product of nonzero eigenvalues
(pseudodeterminant)

» Correction factors ¢, ¢’ involve torsion homology; often trivial
» When do L and/or Lt have integer eigenvalues?
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Kalai's Theorem

Complete d-dimensional complex on n vertices:
Knd ={F C{1,....,n} | dimF <d}
(In particular K1 = Kj.)

Theorem [Kalai '83]

T(Kndg) = n(ng )

Better yet,
Y 271 _degr (/) (122 ("-2)
Z |Hd_]_(T)| fo = (Xl"'Xn) d—1 (X1+"'+Xn) d )],
Te7(K) i=1
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Kalai's Theorem

» Kalai's theorem reduces to 7(K,) = n"~2 when d = 1, and
the weighted version reduces to Cayley-Prifer.

n—2
» Bolker (1976): Observed that n( a) is an exact count of
trees for small n, d, but fails for n =6, d = 2.

» The problem is torsion — RIP? requires six vertices to
triangulate

» Adin (1992): Analogous formula for complete colorful
complexes, generalizing 7(Kj m) = n™ 1m"1

» Duval-Klivans—JLM (2009): Enumeration for shifted
complexes (I might get to this later)
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Resistor Networks

A [resistor] network N = (V. E,r) is a connected graph (V, E)
together with positive resistances r = (re)eck.

—

NN
8 1IN 2N currents i = (ié')eEE

- 1 = voltages v = (Vz)ecE

Ohm’s law iete =Vve (Ve€E)
Kirchhoff’s current law Net current out of every vertex is 0

Kirchhoff’s voltage law Net voltage gain around every cycle is 0
Every voltage comes from a potential (px)«cv via vg = p, — px
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Kirchhoff's Laws and the Incidence Matrix

[0] 12 31 41 52 34 45 63 74 67
1 (-1 1 1 0 0 0 0 0 0
2 {1 0o o 1 0o 0o 0o 0 o0
3 o -1 0 0 -1 0 1 0 o0
4 o 0 -1 0 1 -1 0 1 0
5 o o o -1 0 1 0 0 o0
6 [0 o o o o o -1 0 -1
7 o o o o 0o 0o 0 -1 0
8 \o 0 0 0 0 0O 0 0 -1

KCL: i € ker @ = nullspace(9)
» Currents are flows
KVL: v € (ker )+ = rowspace(d)

P> Voltages are cuts

25 /40



Effective Resistance

Idea: Attach a current generator: edge e = x_f/ with current e,
then look for currents and voltages satisfying OL, KCL, KPL.

Dirichlet principle The state of the system is the unique
minimizer of “total energy” ). veie subject to OL, KCL, KPL.

Rayleigh principle As far as the external world is concerned, the
system is equivalent to a single edge e with resistance
Py — Px

eff _ peff __
RE™ = R = .
Ce

(the effective resistance of e).

Fact: If (v,i) obeys OL+KCL+KPL and minimize energy, then

ff :
R = Ve/le.
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Effective Resistance and Tree Counting

Theorem [Thomassen 1990]
Let N = (V,E,r) be a network and e = xy € E.
e Ifr=1, then

peft _ T(G/xy)

= Pr[random spanning tree contains x
() [ panning y]

e Generalization for arbitrary resistances:

-1
I~

#(G/xy)  TeT(G/xy) ecT

7A'(G) B Z H r*1

TeT(G) eeT

eff
RXy =

Combinatorial application: weighted tree enumeration!
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Application: Ferrers Graphs

The Ferrers graph Gy of a partition A\ has vertices corresponding
to the rows and columns of X, and edges corresponding to squares.

1 2 3 4
ujp Uz U3 Uy

1
2 W
3

vi V2 VW3

Here A = (4,4,2), N = (3,3,2,2), n=3=4(\), m=4 = {(\N).
Define a degree-weighted tree enumerator

Z deegT u;) H degr(v})
J=1

TeZ(Gy) i=1
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Application: Ferrers Graphs
1 2 3 4
uy u us ug

1
: D ¢
3

Vi v2 w3

Theorem (Ehrenborg and van Willigenburg, 2004):

n n

?(G,\)le“-xm)/l"'ynH()/l+"'+y,\,-)H(X1+"'+X,\j'.)
i=2 j=2

(Proof sketch: Find effective resistance of a corner of \; induct.)
In the example above,

%(GA) = X1X2X3X4 y1Y2Y3
X(y1+y2+y3)n+ )/2)2(X1 + x2 + x3 + xa)(x1 + x2)

and in particular 7(Gy) =3-22-4.2.
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Simplicial Networks

Simplicial network: pure complex A9 with resistances (rp)ped
(b = facets of A)

KA o/
=1 vy |9
Tl AN

Currents i = (ip)peco Voltages v = (Vy)pco

Ohm’s law ipry, = v, forall p € ®
Kirchhoff’s current law i € ker(9y)
Kirchhoff’s voltage law v € ker(9y)*

» Dirichlet, Rayleigh, R*f have natural simplicial analogues.
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Counting Simplicial Trees via Effective Resistance

Theorem [Kook—Lee 2018]
Let (A, r) be a simplicial network and o a current generator. Then:

Y. AT Z)P [ it

Reff _ H(Afo) _ Te7(a/o) peT
0 #(4) > NAe(T )P T] it
TeT(A) peT

> Generalizes Thomassen's theorem for R*ff in graphs
» A/o = quotient complex (not simplicial, but close enough)

» Application: count trees by induction on facets (a la
Ehrenborg—van Willigenburg)
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Shifted Complexes

A (pure) simplicial complex A on vertices {1,..., n} is shifted if
any vertex of a face may be replaced with a smaller vertex.
Equivalently, the facets of A form an order ideal in Gale order or
componentwise order (best explained by a picture)

\\ 7/ AN A = <135, 234>Ga|e

126 135 234
N SN S Facets
125\ /134 Nonfaces
124 Critical pairs
\
123

Shifted complexes are nice: shellable, good h-vectors, arise in
algebra (Borel-fixed ideals), generalize threshold graphs
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Shifted Complexes

Duval-Reiner '02: Let \; = number of max-dim faces containing
vertex i. Then eigenvalues of L(A) = column lengths of A.

(Generalizes Merris's Theorem — one-dimensional shifted
complexes are just threshold graphs.)

Duval-Klivans—JLM ’09: recursion for 7(A) via the shifted
complexes (p € A1 € p)and (pe A|1¢p).
Here 7(A) is the finely weighted degree enumerator

7(A) = Z |Hy—1("; Z)? H X000 ** Xd,vg

TeT(A) facets
{vo<-<vg}

Punchline: Critical pairs P correspond to factors fp of 7(A).
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Shifted Complexes

236 X ] 245
136 145 235 136 145 235
I NN ~— 7 \
126 135 234 126 135 234
N N S N N
125 134 125 134
N/ N/
124 124
\ \
A 123 Afo 123
3 [T fe
RefF(O') _ T(A/O‘) _ yellow P
D) [T f

green P
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Color-Shifted Complexes

A simplicial complex A9 is color-shifted [Babson—Novik '06] if:
> V(A) =ViU---U Vyq1, where Vq = {Vql, e ngq}

» Each facet contains exactly one vertex of each color

> A vertex may be replaced with a smaller vertex of same color

(Equivalently, facets are an order ideal in Vi x --- x Vg.)

» A 1-dimensional color-shifted complex is just a Ferrers graph.

car W NN

1 2 3 4 5 6

[
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Color-Shifted Complexes

V32 V22

4 2
44@
AN

it
R A
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Trees in Color-Shifted Complexes

Vertex-weighted spanning tree enumerators:

#A)= > [Hia(MZ)P ] ] x

TeT(A) €T vgi€p
= Y Haa(z)P g
TeT(A) q.J

Proposition [Duval-Kook-Lee—JLM 20217]
Let A? be color-shifted and o = V1ki - -« Vdilkg, @ Minimal
nonfacet. Then
N d+1
Reff(o_) _ T(A + J) _ H Xq,1 +eeet Xq,kq )
T(A) Xg 1+ o+ Xgkg—1

q=1
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Trees in Color-Shifted Complexes

Theorem [Duval-Kook—Lee-JLM 2022+]

#A) =TI TI Ggpa + o+ Xm(oyk()
q,i peEA

dimp=d-1
where

e(q,i) =#{c € Ay | vq,i € 0 and vy 1 € o for some ¢’ # q}

m(p) = unique color missing from p

k(p) = max{j ’ pU Vm(p),j € A}

» Special case d =1 is Ehrenborg—van Willigenburg
» Previously conjectured by Aalipour and Duval [unpublished]

» Result seems inaccessible without effective resistance
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Thank youl!
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