Hopf Monoids II

Jeremy Martin

KU Combinatorics Seminar, 10/2/20 and 10/9/20

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The Antipode in $\boldsymbol{\mathsf{L}}$

Recall that $\boldsymbol{\ell}$ is the set species defined by

$$\ell[I] = \{ \text{linear orders on } I \} = \{ \text{bijections } [|I|] \rightarrow I \}.$$

The corresponding vector species $\boldsymbol{\mathsf{L}}=\Bbbk\boldsymbol{\ell}$ can be made into a Hopf monoid by

$$\mu_{I,J}(u \otimes v) = u \cdot v, \qquad \Delta_{I,J}(w) = w|_I \otimes w|_J$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where \cdot means concatenation.

Example $\mu(528 \otimes 74639) = 52874639$ $\Delta_{2345,6789}(52874639) = 5243 \otimes 8769$

The Antipode in L

Let $w \in \mathbf{L}[n]$. Takeuchi's formula gives

$$\mathbf{s}(w) = \sum_{\Phi \models [n]} (-1)^{|\Phi|} \mu_{\Phi}(\Delta_{\Phi}(w)) = \sum_{\Phi = \Phi_1 | \cdots | \Phi_k \models [n]} (-1)^k \underbrace{\mu_{\Phi}(\Delta_{\Phi}(w))}_{u_{\Phi}}$$

Say that a *w*-split of $u \in L(E)$ is an expression $u = u^{(1)} \cdots u^{(k)}$, such that each $u^{(i)}$ is correctly ordered w/r/t w.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

w = 123456789, u = 7381462957 \cdot 38 \cdot 14 \cdot 6 \cdot 29 \cdot 5: w-split 7 \cdot 3 \cdot 8 \cdot 146 \cdot 2 \cdot 9 \cdot 5: w-split 7 \cdot 38 \cdot 14 \cdot 62 \cdot 9 \cdot 5: not a w-split

The Antipode in L

Let
$$\Phi \models [n]$$
. Then $\mu_{\Phi}(\Delta_{\Phi}(w)) = w|_{\Phi_1} \cdots w|_{\Phi_k}$ is a *w*-split. So
 $\mathbf{s}(w) = \sum_{u \in \ell(E)} c_u u$, where $c_u = \sum_{\substack{w \text{-splits} \\ u = u^{(1)} \cdots u^{(k)}}} (-1)^k$.

On the other hand, if u contains any two letters in order, then toggling the separator between them is an involution that changes the sign of w. So almost everything cancels, and

$$\mathbf{s}(w) = (-1)^{|w|} w^{\mathsf{rev}}.$$

Alternatively: $c_u = (-1)^{|w|}$ times the reduced Euler characteristic of the simplex whose vertices are the possible separators between correctly ordered pairs of letters in u.

Duals of Hopf Monoids

Let $(\mathbf{H}, \mu, \Delta)$ be a vector Hopf monoid over $\Bbbk.$ Its \mathbf{dual} is the vector species

 $\mathbf{H}^*[I] = \operatorname{Hom}(\mathbf{H}[I], \Bbbk)$

made into a Hopf monoid by

Concretely: $\mu^* = \Delta^T$, $\Delta^* = \mu^T$ (w/r/t std. basis) Also, $\mathbf{s}^* = \mathbf{s}$

うせん 同一人用 人用 人用 人口 マ

The Hopf Monoid L*

As a vector species:

 $\mathsf{L}^*[I] = \mathsf{L}[I] = \Bbbk \ell[I] = \Bbbk \{ \text{linear orders on } I \}$

As a Hopf monoid:

$$\mu_{I,J}^*(u \otimes v) = \sum_{\substack{w \in \boldsymbol{\ell}[I \sqcup J] \\ w|_I = u, \ w|_J = v}} w = \sum_{\substack{w \in \mathsf{Shuffle}(u,v)}} w$$

Example

14 * 32 = 1432 + 1342 + 1324 + 3142 + 3124 + 3214 = 32 * 14

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

The Hopf Monoid L*

$$\Delta^*_{I,J}(w) = \sum_{\substack{u \in \boldsymbol{\ell}[I] \\ v \in \boldsymbol{\ell}[J] \\ u \cdot v = w}} u \otimes v$$

$$= \begin{cases} w|_I \otimes w|_J & \text{if } w|_I \text{ is an initial segment} \\ 0 & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- L is cocommutative but not commutative
- L* is commutative but not cocommutative

Hadamard Products of Hopf Monoids

The **Hadamard product** $\mathbf{H} \times \mathbf{J}$ of Hopf monoids \mathbf{H}, \mathbf{J} is defined by $(\mathbf{H} \times \mathbf{J})[I] = \mathbf{H}[I] \otimes \mathbf{J}[I], \quad \Delta^{\mathbf{H} \times \mathbf{J}} = \Delta^{\mathbf{H}} \otimes \Delta^{\mathbf{J}}, \quad \mu^{\mathbf{H} \times \mathbf{J}} = \mu^{\mathbf{H}} \otimes \mu^{\mathbf{J}}.$

If the basis elements of $\mathbf{H}[I]$ are widgets on I, then the basis elements of $\mathbf{L} \times \mathbf{H}$ or $\mathbf{L}^* \times \mathbf{H}$ are *ordered* widgets.

Note: \times is *not* multiplicative on antipodes — there is (probably) no formula giving $s^{H \times J}$ in terms of s^{H} and s^{J} .

Problem

What are the antipodes in $L \times L$, $L \times L^*$, $L^* \times L^*$, $L \times L \times L$, etc.?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Normal Fans of Polytopes

Let $\mathfrak{p} \subseteq \mathbb{R}^n$ be a polytope and $\phi \in (\mathbb{R}^n)^*$. I.e., ϕ is a linear functional $\mathbb{R}^n \to \mathbb{R}$, say $\phi(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$.

 $\mathsf{Then}\ \mathfrak{p}_\phi = \{\mathbf{x} \in \mathfrak{p}:\ \phi(\mathbf{x}) \geqslant \phi(\mathbf{y})\ \forall \mathbf{y} \in \mathfrak{p}\} \text{ is a face of } \mathfrak{p}.$

The normal cone of a face $\mathfrak{q} \subset \mathfrak{p}$ is

$$N(\mathfrak{q}) = N_{\mathfrak{p}}(\mathfrak{q}) = \{ \phi \in (\mathbb{R}^n)^* : \mathfrak{p}_{\phi} = \mathfrak{q} \}.$$

- dim $N(q) = n \dim q$
- $\bullet \ \overline{\mathfrak{q}} \subseteq \overline{\mathfrak{r}} \iff \overline{N(\mathfrak{r})} \subseteq \overline{N(\mathfrak{q})}$

The normal cones of all faces make up the **normal fan** $\mathcal{N}_{\mathfrak{p}}$.

If \mathfrak{p} is an unbounded polyhedron then $\mathcal{N}_{\mathfrak{p}}$ is not complete (it only includes directions that define a face)

Normal Fans of Polytopes: Example

Let $\mathfrak{p} = \text{conv}((0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 0, 2)) \subset \mathbb{R}^3$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Normal Fans of Polytopes: Example

Let $\mathfrak{p} = \text{conv}((0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 0, 2)) \subset \mathbb{R}^3$.

Define $\phi \in (\mathbb{R}^3)^*$ by $\phi(x_1, x_2, x_3) = \alpha_1 x_1 = \alpha_2 x_2 + \alpha_3 x_3$.

q	N(q)	q	N(q)
021	$\alpha_1, \alpha_3 < \alpha_2$	b	$\alpha_1 < \alpha_2 = \alpha_3$
012	$\alpha_1 < \alpha_2 < \alpha_3$	c	$\alpha_2 < \alpha_1 = \alpha_3$
102	$\alpha_2 < \alpha_3, \alpha_1$	0	$\alpha_2 = \alpha_3 < \alpha_1$
111	$\alpha_3 < \alpha_2 < \alpha_1$	e	$\alpha_1 = \alpha_3 < \alpha_2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Normal Fans of Polytopes: Example

Let $\mathfrak{p} = \text{conv}((0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 0, 2)) \subset \mathbb{R}^3$.

Define $\phi \in (\mathbb{R}^3)^*$ by $\phi(x_1, x_2, x_3) = \alpha_1 x_1 = \alpha_2 x_2 + \alpha_3 x_3$.

q	N(q)	q	N(q)
• 021	$\alpha_1, \alpha_3 < \alpha_2$	b	$\alpha_1 < \alpha_2 = \alpha_3$
012	$\alpha_1 < \alpha_2 < \alpha_3$	c	$\alpha_2 < \alpha_1 = \alpha_3$
• 102	$\alpha_2 < \alpha_3, \alpha_1$	0	$\alpha_2 = \alpha_3 < \alpha_1$
• 111	$\alpha_3 < \alpha_2 < \alpha_1$	e	$\alpha_1 = \alpha_3 < \alpha_2$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The **standard permutahedron** is the polytope $\Pi_n \subset \mathbb{R}^n$ whose vertices are the *n*! permutations of (1, 2, ..., n).

For a linear functional $\phi(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$, the face of Π_n maximized by ϕ is determined by the relative order of a_1, \ldots, a_n .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

That is, the normal fan \mathcal{N}_{Π_n} is the **braid fan.**

- The **braid arrangement** Br_n consists of the hyperplanes H_{ij} : $x_i = x_j$ in \mathbb{R}^n , for $1 \le i < j \le n$
- Br_n splits ℝⁿ into faces (on/above/below each H_{ij}).
 Each face is an open cone (closed under multiplication by positive scalars)
- Faces are indexed by set compositions of [n]:

 $x_2 = x_5 < x_3 < x_1 = x_6 < x_4 \qquad \Longleftrightarrow \qquad 25|3|16|4$

The collection of all faces is the braid fan.

・ロト・西ト・山田・山田・山口・

Intersecting the braid fan with the unit sphere gives a simplicial (n-2)-sphere $\Sigma_n = \partial(\Pi_n^*)$. Each $A \models I$ corresponds to a face of Σ_n of dimension |A| - 2.

Intersecting the braid fan with the unit sphere gives a simplicial (n-2)-sphere $\sum_n = \partial(\prod_n^*)$. Each $A \models I$ corresponds to a face of \sum_n of dimension |A| - 2.

▲□▶ ▲□▶ ★ □▶ ★ □▶ ▲ □ ● のへで

Intersecting the braid fan with the unit sphere gives a simplicial (n-2)-sphere $\Sigma_n = \partial(\Pi_n^*)$. Each $A \models I$ corresponds to a face of Σ_n of dimension |A| - 2.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Here's (the front side of) Σ_4 .

Advantage of working with Σ_n : we can import topological tools from the theory of simplicial complexes (like Euler characteristic) in working with set compositions (which arise naturally in Hopf-monoid land, e.g., in Takeuchi's formula) A polyhedron $\mathfrak{p} \subseteq \mathbb{R}^n$ is a **generalized permutahedron** if the following equivalent conditions hold:

- 1. Every edge of \mathfrak{p} is parallel to $\mathbf{e}_i \mathbf{e}_j$ for some i, j
- 2. The normal fan of p is a coarsening of [a subfan of] the braid fan
- For any linear functional φ given by φ(x) = a · x, the face of p maximized by φ depends only on the relative order of a₁,..., a_n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $\mathfrak{p} = conv((0,1,2), (0,2,1), (1,1,1), (1,0,2)) \subset \mathbb{R}^3$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

うしん 同一人用 人用 人口 マ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let
$$\mathfrak{p} = \operatorname{conv}((0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 0, 2)) \subset \mathbb{R}^3$$
.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let
$$\mathfrak{p} = \operatorname{conv}((0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 0, 2)) \subset \mathbb{R}^3$$
.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Matroid Base Polytopes

Let M be a matroid on ground set [n] with basis system \mathcal{B} . The **matroid base polytope** is

$$\mathfrak{p}_M = \operatorname{conv}\{\chi_B : B \in \mathcal{B}\} \subset \mathbb{R}^n$$

where χ_B is the characteristic vector of *B*:

$$(\chi_B)_i = \begin{cases} 1 & \text{if } i \in B, \\ 0 & \text{if } i \notin B. \end{cases}$$

Example

$$M = \text{matroid rep'd by} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix} \qquad \mathcal{B} = \{12, 13, 23, 24, 34\}$$
$$\mathfrak{p}_M = \text{conv}(1100, 1010, 0110, 0101, 0011) \subset \mathbb{R}^4$$

Matroid Base Polytopes

Theorem

Matroid base polytopes are generalized permutahedra.

Proof idea #1: Edges correspond to matroid basis exchanges.

Proof idea #2: A linear functional $\phi(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$ on \mathfrak{p}_M can be maximized by running Kruskal's algorithm using \mathbf{a} as a weight function. The algorithm only compares coefficients of \mathbf{a} (no arithmetic).

Theorem (Gelfand–Goresky–Macpherson-Serganova) Matroid base polytopes are exactly the bounded generalized permutahedra with 0/1 coordinates.

The Hopf Monoid of Generalized Permutahedra

Consider the vector species

 $GP[I] = \Bbbk \{ \text{bounded generalized permutahedra } \mathfrak{p} \subset \mathbb{R}^I \}.$

Fact

Let $\mathfrak{p} \in \mathbf{GP}[I]$ and $I = J \sqcup K$. Let $1_J(\mathsf{x}) = \sum_{j \in J} x_j$. Then $\mathfrak{p}_{1_J} = \mathfrak{p}|J \times \mathfrak{p}/J$ for some $\mathfrak{p}|J \in \mathbf{GP}[J]$ and $\mathfrak{p}/J \in \mathbf{GP}[K]$.

(In other words, no equation defining the face minimized by $\mathbf{1}_J$ involves coordinates from both J and K.)

Theorem

GP is a (commutative) Hopf monoid under the operations

$$\mu(\mathfrak{p}\otimes\mathfrak{q})=\mathfrak{p} imes\mathfrak{q}\qquad \qquad \Delta_{J,K}(\mathfrak{p})=\mathfrak{p}|J\otimes\mathfrak{p}/J.$$

The Fact above implies $\mu_A(\Delta_A(\mathfrak{p})) = \mathfrak{p}_A$ for any $A \models I$. This is relevant to the Takeuchi antipode formula.

The Hopf Monoid of Generalized Permutahedra

- Matroid base polytopes form a submonoid $Mat \subset GP$
- Allowing unbounded ("extended") generalized permutahedra produces an extension GP₊
- Identifying (extended) generalized permutahedra with the same normal fans produces quotients GP, GP₊

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Antipode in **GP**

Theorem (Aguiar–Ardila) Let $\mathfrak{p} \in \mathbf{GP}_+[I]$ and n = |I|. Then

$$\mathbf{s}(\mathbf{p}) = \sum_{\textit{faces } \mathbf{q} \subseteq \mathbf{p}} (-1)^{n-\dim \mathbf{q}} \, \mathbf{q}.$$

Proof sketch: (1) Expand s(p) using Takeuchi; collect like terms:

$$\mathbf{s}(\mathbf{p}) = \sum_{A \models I} (-1)^{|A|} \mu_A(\Delta_A(\mathbf{p})) = \sum_{A \models I} (-1)^{|A|} \mathbf{p}_A = \sum_{q \subseteq \mathbf{p}} \mathfrak{q} \underbrace{\sum_{C \in \mathcal{C}_q} (-1)^{\dim C}}_{\alpha_q}$$

where C_q is the set of braid faces in $N_p(q)$

(2) Identify C_q with a $(\mathbb{B}^{n-\dim q-2})^\circ$ open subcomplex of Σ_n . Interpret α_q in terms of Euler characteristics of balls and spheres.

The Antipode in $\mathbf{L}^*\times\mathbf{GP}$

(Joint work with Federico Castillo and José Samper)

Idea: "If the basis elements of H[I] are widgets on I, then the basis elements of $L \times H$ or $L^* \times H$ are *ordered* widgets."

- \blacktriangleright L* \times Mat: matroids with ordered ground set
- $\blacktriangleright~L^* \times GP:$ gen perms with ordered coordinates

Why bother to order the ground set?

- To study matroids using Hopf methods, we can study Mat.
- But to study related structures (shifted complexes, broken-circuit complexes, 0/1-GPs), we need an ordering
- These things do not give Hopf monoid extensions of Mat, but they do extend L* × Mat (not L × Mat!)

Recall that a matroid polytope is just a bounded generalized permutahedron with 0/1 coordinates.

Recall that a matroid polytope is just a bounded generalized permutahedron with 0/1 coordinates.

What about possibly-unbounded 0/1-GPs? These give rise to a larger family than just matroid complexes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recall that a matroid polytope is just a bounded generalized permutahedron with 0/1 coordinates.

What about possibly-unbounded 0/1-GPs? These give rise to a larger family than just matroid complexes.

A complex Γ on I is a matroid iff $\Gamma|_A$ is pure for every $A \subseteq I$. This enables us to define

$$\Delta_{A,B}(\Gamma) = \Delta |A \otimes \Delta / A$$

where

$$\Delta/A = \mathsf{link}_{\Gamma}(\phi) = \{ \sigma \subset B : \ \sigma \cup \phi \in \Delta \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for any facet ϕ of $\Delta | A$.

Recall that a matroid polytope is just a bounded generalized permutahedron with 0/1 coordinates.

What about possibly-unbounded 0/1-GPs? These give rise to a larger family than just matroid complexes.

A complex Γ on I is a matroid iff $\Gamma|_A$ is pure for every $A \subseteq I$. This enables us to define

$$\Delta_{A,B}(\Gamma) = \Delta |A \otimes \Delta / A$$

where

$$\Delta/A = \mathsf{link}_{\Gamma}(\phi) = \{ \sigma \subset B : \ \sigma \cup \phi \in \Delta \}$$

for any facet ϕ of $\Delta | A$.

This breaks down if Γ is not a matroid!

Hopf monoids of EGPs

We don't want to work with $L^*\times GP_+;$ we only want to consider orderings that are bounded w/r/t $\mathfrak p$ in the following sense.

Let $\mathfrak{p} \in \mathbf{GP}_+[I]$, i.e., $\mathfrak{p} \subset \mathbb{R}^I$ is a (possibly unbounded) GP. Define $\ell_{\mathfrak{p}}[I] = \{ w \in \ell[I] : \sigma_{w^{rev}} \subseteq \mathcal{N}_{\mathfrak{p}} \}$ $= \{ w \in \ell[I] : \mathfrak{p}_{w^{rev}} \text{ is a well-defined vertex of } \mathfrak{p} \}.$

Now define a vector subspecies of $L^* \times GP_+$ by

$$\mathsf{OGP}_+[I] = \langle w \otimes \mathfrak{p} : \mathfrak{p} \in \mathsf{GP}_+[I], \ w \in \ell_{\mathfrak{p}}[I] \rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem OGP₊ is a Hopf monoid.