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The Antipode in L

Recall that £ is the set species defined by
£[1] = {linear orders on I} = {bijections [|/|] — /}.

The corresponding vector species L = k€ can be made into a Hopf
monoid by

pr(u®v) =u-v, Ajg(w) =wl@wl|y

where - means concatenation.

Example

11(528 @ 74639) = 52874639
Aoza5,6780 (52874639) = 5243 ® 8769



The Antipode in L

Let w € L[n]. Takeuchi's formula gives

sw)= >, Dhe(dew) = 3] (=DF pe(Le(w)) .
di=[n] P=0; | |Pki=[n] U
Say that a w-split of u € L(E) is an expression u = u) ... u(k),
such that each u() is correctly ordered w/r/t w.
Example
w = 123456789, u = 738146295
7-38-14-6-29-5: w-split
7-3-8-146-2-9-5: w-split

7-38-14-62-9-5: not a w-split



The Antipode in L

Let ® = [n]. Then po(Ae(w)) = wle, - - wle, is a w-split. So

s(w) = Z cuu, where Cy = Z (—1)k.
uel(E) w-splits
T )
On the other hand, if u contains any two letters in order, then
toggling the separator between them is an involution that changes
the sign of w. So almost everything cancels, and

s(w) = (=1)"lwr,

Alternatively: ¢, = (—1)"I times the reduced Euler characteristic
of the simplex whose vertices are the possible separators between
correctly ordered pairs of letters in w.



Duals of Hopf Monoids

Let (H, i, A) be a vector Hopf monoid over k. Its dual is the

vector species
H*[/] = Hom(H[/], k)

made into a Hopf monoid by

A*(¢) = gopu pr(p) = oA
HIN@HU M H L J]  H[IuJ]—S H[I] @ H[J]
A% (9) id’ W () lw
k k

Concretely: p* = AT, A* = T (w/r/t std. basis)
Also, s* =s



The Hopf Monoid L*

As a vector species:
L*[/] = L[/] = k€[I] = k{linear orders on [}
As a Hopf monoid:

*
pr(u@v) = w= Z w
wel[luJ] weShuffle(u,v)
wlj=u, wly=v

Example

14 % 32 = 1432 + 1342 + 1324 + 3142 4 3124 4- 3214 = 32 x 14



The Hopf Monoid L*

fw)= > u®v

w|; ® w|y if w|; is an initial segment

0 otherwise.

» L is cocommutative but not commutative

» L* is commutative but not cocommutative



Hadamard Products of Hopf Monoids

The Hadamard product H x J of Hopf monoids H, J is defined by

Hx [ =HN @[], AMd = afeal, - He

If the basis elements of H[/] are widgets on /, then the basis
elements of L x H or L* x H are ordered widgets.

Note: x is not multiplicative on antipodes — there is (probably)
no formula giving sH*J in terms of sH and s’.

Problem
What are the antipodes inL xL, L xL*, L*xL* LxLxL, etc.?



Normal Fans of Polytopes

Let p < R” be a polytope and ¢ € (R™)*. l.e., ¢ is a linear
functional R” — R, say ¢(x) = a-x.

Then py = {xep: ¢(x) = ¢(y) Yy € p} is a face of p.

The normal cone of a face qc p is

N(q) = Np(q) = {¢p € (R")*: pg = a}.

>

=g

Ry
n 3
|

=2

(q) = n—dimgq

> N(r) = N(q)

>

The normal cones of all faces make up the normal fan N.

If p is an unbounded polyhedron then N is not complete (it only
includes directions that define a face)



Normal Fans of Polytopes: Example
Let p = conv((0,1,2),(0,2,1),(1,1,1),(1,0,2)) = R3.

021 111

012 102



Normal Fans of Polytopes: Example
Let p = conv((0,1,2),(0,2,1),(1,1,1),(1,0,2)) = R3.

021 111

012 102

Define ¢ € (R3)* by ¢(x1, X0, X3) = q1x1 = Qaxa + Q3X3.

q N(q) g N()

021 a1, 03 < Q2 b o] < 0 = (3
012 o] < o < O3 C o < (1] = (3
102 o < (as,01 0 ay = a3 < (1
111 a3z < ap < o1 4 o] = a3 < (2



Normal Fans of Polytopes: Example
Let p = conv((0,1,2),(0,2,1),(1,1,1),(1,0,2)) = R3,

021 111

012 102

ar = a3

Define ¢ € (R3)* by ¢(x1,x0,X3) = a1x1 = qaxz + 3X3.

q N(q) la N
® 021 a1, a3 < @ b a; < ap = Q3
012 a; < ap < as c ar < ap =3
© 102 o < (3,01 0 ay = a3 < (1
@111 a3 < ap < a1 [4 a; = a3 < a2

=] F




The Standard Permutahedron

The standard permutahedron is the polytope 1, = R" whose
vertices are the n! permutations of (1,2,...,n).

For a linear functional ¢(x) = a - x, the face of 1, maximized by ¢
is determined by the relative order of ay, ..., an.

That is, the normal fan Np, is the braid fan.



The Braid Fan

v

The braid arrangement Br, consists of the hyperplanes
Hij: xi=x;inR" for1<i<j<n

v

Bry, splits R" into faces (on/above/below each Hjj).

Each face is an open cone (closed under multiplication by
positive scalars)

» Faces are indexed by set compositions of [n]:

Xp=X5 < X3 <X =X < X4 — 25|3|16/4

v

The collection of all faces is the braid fan.



The Braid Fan




The Braid Fan

Intersecting the braid fan with the unit sphere gives a simplicial
(n — 2)-sphere ¥, = d(MN%). Each A = | corresponds to a face of
Y, of dimension |A| — 2.
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The Braid Fan

Intersecting the braid fan with the unit sphere gives a simplicial
(n — 2)-sphere ¥, = d(MN%). Each A = | corresponds to a face of
Y, of dimension |A| — 2.




The Braid Fan

Here's (the front side of) 4.

Advantage of working with X,: we can import topological tools
from the theory of simplicial complexes (like Euler characteristic)
in working with set compositions (which arise naturally in
Hopf-monoid land, e.g., in Takeuchi's formula)



Generalized Permutahedra

A polyhedron p € R” is a generalized permutahedron if the
following equivalent conditions hold:

1. Every edge of p is parallel to e; — e; for some i, j

2. The normal fan of p is a coarsening of [a subfan of] the braid
fan

3. For any linear functional ¢ given by ¢(x) = a - x, the face of p
maximized by ¢ depends only on the relative order of
dl,...,dn.



Generalized Permutahedra: Example

Let p = conv((0,1,2),(0,2,1),(1,1,1),(1,0,2)) = R3.

021 111

€ —€;

012 102

~

€ — €3



Generalized Permutahedra: Example

Let p = conv((0,1,2),(0,2,1), (1,1,1),(1,0,2)) = R3.
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Generalized Permutahedra: Example

Let p = conv((0,1,2),(0,2,1), (1,1,1),(1,0,2)) = R3.
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Generalized Permutahedra: Example

Let p = conv((0,1,2),(0,2,1),(1,1,1),(1,0,2)) = R3.
021

111

123

3|12

012

123
23|1 2|31

102

DA



Matroid Base Polytopes

Let M be a matroid on ground set [n] with basis system B. The
matroid base polytope is

ppm =conv{xg: BeB}cR"

where x g is the characteristic vector of B:

ey [ FicB.
XBi= 0 ifi¢B.

Example

M = matroid rep'd by {

Ll 2} B = {12,13,23,24,34}

121 2
py = conv(1100, 1010, 0110, 0101, 0011) = R*



Matroid Base Polytopes

Theorem
Matroid base polytopes are generalized permutahedra.

Proof idea #1:
Edges correspond to matroid basis exchanges.

Proof idea #2:

A linear functional ¢(x) = a - x on py can be maximized by
running Kruskal's algorithm using a as a weight function. The
algorithm only compares coefficients of a (no arithmetic).

Theorem (Gelfand—Goresky—Macpherson-Serganova)

Matroid base polytopes are exactly the bounded generalized
permutahedra with 0/1 coordinates.



The Hopf Monoid of Generalized Permutahedra

Consider the vector species

GP[/] = k{bounded generalized permutahedra p c R'}.

Fact
LetpeGP[/] and I = Ju K. Let 1,(x) = X ;c; ;-
Then p1, = p|J x p/J for some p|J € GP[J] and p/J € GP[K].

(In other words, no equation defining the face minimized by 1,
involves coordinates from both J and K.)

Theorem
GP is a (commutative) Hopf monoid under the operations

pp®q) =p xq Ajk(p) =pld ®p/J.

The Fact above implies pa(Aa(p)) = pa for any A= 1.
This is relevant to the Takeuchi antipode formula.



The Hopf Monoid of Generalized Permutahedra

» Matroid base polytopes form a submonoid Mat — GP

» Allowing unbounded (“extended”) generalized permutahedra
produces an extension GP

> Identifying (extended) generalized permutahedra with the
same normal fans produces quotients GP, GP



The Antipode in GP

Theorem (Aguiar—Ardila)
Letpe GP[/] and n = |l|. Then

s(p) = D, (~1)"4mag.

faces q<p

Proof sketch: (1) Expand s(p) using Takeuchi; collect like terms:

s(p) = O ()M ua(@a®) = 3 (=DMpa = Ylq 3] (—1)9m€

A=l A=l acp  CeCq

q
where Cq is the set of braid faces in N,(q)

2) Identify C; with a (B"~9m39=2)° open subcomplex of ¥ ,,.
q
Interpret oy in terms of Euler characteristics of balls and spheres.



The Antipode in L* x GP

(Joint work with Federico Castillo and José Samper)

Idea: “If the basis elements of H[/] are widgets on /, then the
basis elements of L x H or L* x H are ordered widgets.”

» L* x Mat: matroids with ordered ground set

» L* x GP: gen perms with ordered coordinates
Why bother to order the ground set?

» To study matroids using Hopf methods, we can study Mat.

» But to study related structures (shifted complexes,
broken-circuit complexes, 0/1-GPs), we need an ordering

» These things do not give Hopf monoid extensions of Mat, but
they do extend L* x Mat (not L x Mat!)



Example: 0/1-GPs

Recall that a matroid polytope is just a bounded generalized
permutahedron with 0/1 coordinates.
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Example: 0/1-GPs

Recall that a matroid polytope is just a bounded generalized
permutahedron with 0/1 coordinates.

What about possibly-unbounded 0/1-GPs? These give rise to a
larger family than just matroid complexes.

A complex I on [ is a matroid iff ['| 4 is pure for every A < I. This
enables us to define

Apg(MN) =AA® A/A

where

AJA = linkr(¢) = {o < B: 0 U de A}
for any facet ¢ of A|A.

This breaks down if T is not a matroid!



Hopf monoids of EGPs

We don't want to work with L* x GP_; we only want to consider
orderings that are bounded w/r/t p in the following sense.

Let pe GP,[/], i.e., p = R is a (possibly unbounded) GP. Define

Ll ={wel[l]: owre SN}
={wel[l]: purev is a well-defined vertex of p}.

Now define a vector subspecies of L* x GP . by

OGP.[/]=(w®p: peGP,[l], wet,[I]).

Theorem
OGP+ is a Hopf monoid.



