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The Antipode in LLL

Recall that `̀̀ is the set species defined by

`̀̀rI s “ tlinear orders on I u “ tbijections r|I |s Ñ I u.

The corresponding vector species LLL “ k`̀̀ can be made into a Hopf
monoid by

µI ,Jpu b vq “ u ¨ v , ∆I ,Jpwq “ w |I b w |J

where ¨ means concatenation.

Example

µp528b 74639q “ 52874639
∆2345,6789p52874639q “ 5243b 8769



The Antipode in LLL

Let w P LLLrns. Takeuchi’s formula gives

ssspwq “
ÿ

Φ(rns

p´1q|Φ|µΦp∆Φpwqq “
ÿ

Φ“Φ1|¨¨¨|Φk(rns

p´1qk µΦp∆Φpwqq

uΦ

.

Say that a w-split of u P LLLpE q is an expression u “ up1q ¨ ¨ ¨ ¨ ¨ upkq,
such that each upiq is correctly ordered w/r/t w .

Example

w “ 123456789, u “ 738146295
7 ¨ 38 ¨ 14 ¨ 6 ¨ 29 ¨ 5: w -split
7 ¨ 3 ¨ 8 ¨ 146 ¨ 2 ¨ 9 ¨ 5: w -split
7 ¨ 38 ¨ 14 ¨ 62 ¨ 9 ¨ 5: not a w -split



The Antipode in LLL

Let Φ ( rns. Then µΦp∆Φpwqq “ w |Φ1 ¨ ¨ ¨w |Φk
is a w -split. So

ssspwq “
ÿ

uP`̀̀pEq

cuu, where cu “
ÿ

w -splits
u“up1q¨¨¨upkq

p´1qk .

On the other hand, if u contains any two letters in order, then
toggling the separator between them is an involution that changes
the sign of w . So almost everything cancels, and

ssspwq “ p´1q|w |w rev.

Alternatively: cu = p´1q|w | times the reduced Euler characteristic
of the simplex whose vertices are the possible separators between
correctly ordered pairs of letters in u.



Duals of Hopf Monoids

Let pHHH, µ,∆q be a vector Hopf monoid over k. Its dual is the
vector species

HHH˚rI s “ HompHHHrI s, kq

made into a Hopf monoid by

∆˚pφq “ φ ˝ µ µ˚pψq “ ψ ˝∆

HHHrI s bHHHrJs
µI ,J //

∆˚pφq
''

HHHrI \ Js

φ
��

HHHrI \ Js
∆I ,J //

µ˚pψq
''

HHHrI s bHHHrJs

ψ
��

k k

Concretely: µ˚ “ ∆T , ∆˚ “ µT (w/r/t std. basis)
Also, sss˚ “ sss



The Hopf Monoid LLL˚

As a vector species:

LLL˚rI s “ LLLrI s “ k`̀̀rI s “ ktlinear orders on I u

As a Hopf monoid:

µ˚I ,Jpu b vq “
ÿ

wP`̀̀rI\Js
w |I“u, w |J“v

w “
ÿ

wPShufflepu,vq

w

Example

14 ˚ 32 “ 1432` 1342` 1324` 3142` 3124` 3214 “ 32 ˚ 14



The Hopf Monoid LLL˚

∆˚
I ,Jpwq “

ÿ

uP`̀̀rI s
vP`̀̀rJs
u¨v“w

u b v

“

#

w |I b w |J if w |I is an initial segment

0 otherwise.

§ LLL is cocommutative but not commutative

§ LLL˚ is commutative but not cocommutative



Hadamard Products of Hopf Monoids

The Hadamard product HHHˆ JJJ of Hopf monoids HHH,JJJ is defined by

pHHHˆ JJJqrI s “ HHHrI s b JJJrI s, ∆HHHˆJJJ “ ∆HHH b∆JJJ, µHHHˆJJJ “ µHHH b µJJJ.

If the basis elements of HHHrI s are widgets on I , then the basis
elements of LLLˆHHH or LLL˚ ˆHHH are ordered widgets.

Note: ˆ is not multiplicative on antipodes — there is (probably)
no formula giving sssHHHˆJJJ in terms of sssHHH and sssJJJ.

Problem
What are the antipodes in LLLˆLLL, LLLˆLLL˚, LLL˚ˆLLL˚, LLLˆLLLˆLLL, etc.?



Normal Fans of Polytopes

Let p Ď Rn be a polytope and φ P pRnq˚. I.e., φ is a linear
functional Rn Ñ R, say φpxq “ a ¨ x.

Then pφ “ tx P p : φpxq ě φpyq @y P pu is a face of p.

The normal cone of a face q Ă p is

Npqq “ Nppqq “ tφ P pRnq˚ : pφ “ qu.

§ dimNpqq “ n ´ dim q

§ q Ď r ðñ Nprq Ď Npqq

The normal cones of all faces make up the normal fan Np.

If p is an unbounded polyhedron then Np is not complete (it only
includes directions that define a face)



Normal Fans of Polytopes: Example

Let p “ convpp0, 1, 2q, p0, 2, 1q, p1, 1, 1q, p1, 0, 2qq Ă R3.

012 102

111021

c

e

b d

α1 “ α2

α2 “ α3

Define φ P pR3q˚ by φpx1, x2, x3q “ α1x1 “ α2x2 ` α3x3.

q Npqq q Npqq

021 α1, α3 ă α2 b α1 ă α2 “ α3

012 α1 ă α2 ă α3 c α2 ă α1 “ α3

102 α2 ă α3, α1 d α2 “ α3 ă α1

111 α3 ă α2 ă α1 e α1 “ α3 ă α2
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The Standard Permutahedron

The standard permutahedron is the polytope Πn Ă Rn whose
vertices are the n! permutations of p1, 2, . . . , nq.

For a linear functional φpxq “ a ¨ x, the face of Πn maximized by φ
is determined by the relative order of a1, . . . , an.

That is, the normal fan NΠn is the braid fan.



The Braid Fan

§ The braid arrangement Brn consists of the hyperplanes
Hij : xi “ xj in Rn, for 1 ď i ă j ď n

§ Brn splits Rn into faces (on/above/below each Hij).

Each face is an open cone (closed under multiplication by
positive scalars)

§ Faces are indexed by set compositions of rns:

x2 “ x5 ă x3 ă x1 “ x6 ă x4 ðñ 25|3|16|4

§ The collection of all faces is the braid fan.



The Braid Fan

x ą y

x ă y
x “ y

y ą z

y ă z

y “ z

x ă z

x ą z

x “ z

12|3

1|2313|2

3|12

23|1 2|31

1|2|3

1|3|2

3|1|2

3|2|1

2|3|1

2|1|3

123



The Braid Fan

Intersecting the braid fan with the unit sphere gives a simplicial
pn ´ 2q-sphere Σn = BpΠ˚nq. Each A ( I corresponds to a face of
Σn of dimension |A| ´ 2.
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The Braid Fan

Here’s (the front side of) Σ4.

Advantage of working with Σn: we can import topological tools
from the theory of simplicial complexes (like Euler characteristic)
in working with set compositions (which arise naturally in
Hopf-monoid land, e.g., in Takeuchi’s formula)



Generalized Permutahedra

A polyhedron p Ď Rn is a generalized permutahedron if the
following equivalent conditions hold:

1. Every edge of p is parallel to ei ´ ej for some i , j

2. The normal fan of p is a coarsening of [a subfan of] the braid
fan

3. For any linear functional φ given by φpxq “ a ¨ x, the face of p
maximized by φ depends only on the relative order of
a1, . . . , an.



Generalized Permutahedra: Example

Let p “ convpp0, 1, 2q, p0, 2, 1q, p1, 1, 1q, p1, 0, 2qq Ă R3.

012 102

111021

e2 ´ e3

e2 ´ e1
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Matroid Base Polytopes

Let M be a matroid on ground set rns with basis system B. The
matroid base polytope is

pM “ convtχB : B P Bu Ă Rn

where χB is the characteristic vector of B:

pχBqi “

#

1 if i P B,

0 if i R B.

Example

M = matroid rep’d by

„

1 1 2 2
1 2 1 2



B “ t12, 13, 23, 24, 34u

pM “ convp1100, 1010, 0110, 0101, 0011q Ă R4



Matroid Base Polytopes

Theorem
Matroid base polytopes are generalized permutahedra.

Proof idea #1:
Edges correspond to matroid basis exchanges.

Proof idea #2:
A linear functional φpxq “ a ¨ x on pM can be maximized by
running Kruskal’s algorithm using a as a weight function. The
algorithm only compares coefficients of a (no arithmetic).

Theorem (Gelfand–Goresky–Macpherson-Serganova)

Matroid base polytopes are exactly the bounded generalized
permutahedra with 0/1 coordinates.



The Hopf Monoid of Generalized Permutahedra

Consider the vector species

GPGPGPrI s “ ktbounded generalized permutahedra p Ă RI u.

Fact
Let p P GPGPGPrI s and I “ J \ K. Let 1Jpxq “

ř

jPJ xj .
Then p1J “ p|J ˆ p{J for some p|J P GPGPGPrJs and p{J P GPGPGPrK s.

(In other words, no equation defining the face minimized by 1J
involves coordinates from both J and K .)

Theorem
GPGPGP is a (commutative) Hopf monoid under the operations

µppb qq “ pˆ q ∆J,K ppq “ p|J b p{J.

The Fact above implies µAp∆Appqq “ pA for any A ( I .
This is relevant to the Takeuchi antipode formula.



The Hopf Monoid of Generalized Permutahedra

§ Matroid base polytopes form a submonoid Mat Ă GPGPGP

§ Allowing unbounded (“extended”) generalized permutahedra
produces an extension GPGPGP`

§ Identifying (extended) generalized permutahedra with the
same normal fans produces quotients GPGPGP, GPGPGP`



The Antipode in GPGPGP

Theorem (Aguiar–Ardila)

Let p P GPGPGP`rI s and n “ |I |. Then

sssppq “
ÿ

faces qĎp

p´1qn´dim q q.

Proof sketch: (1) Expand sssppq using Takeuchi; collect like terms:

sssppq “
ÿ

A(I

p´1q|A|µAp∆Appqq “
ÿ

A(I

p´1q|A|pA “
ÿ

qĂp

q
ÿ

CPCq

p´1qdimC

αq

where Cq is the set of braid faces in Nppqq

(2) Identify Cq with a pBn´dim q´2q˝ open subcomplex of Σn.
Interpret αq in terms of Euler characteristics of balls and spheres.



The Antipode in LLL˚ ˆGPGPGP

(Joint work with Federico Castillo and José Samper)

Idea: “If the basis elements of HHHrI s are widgets on I , then the
basis elements of LLLˆHHH or LLL˚ ˆHHH are ordered widgets.”

§ LLL˚ ˆMat: matroids with ordered ground set

§ LLL˚ ˆGPGPGP: gen perms with ordered coordinates

Why bother to order the ground set?

§ To study matroids using Hopf methods, we can study Mat.

§ But to study related structures (shifted complexes,
broken-circuit complexes, 0/1-GPs), we need an ordering

§ These things do not give Hopf monoid extensions of Mat, but
they do extend LLL˚ ˆMat (not LLLˆMat!)



Example: 0/1-GPs

Recall that a matroid polytope is just a bounded generalized
permutahedron with 0/1 coordinates.

What about possibly-unbounded 0/1-GPs? These give rise to a
larger family than just matroid complexes.

A complex Γ on I is a matroid iff Γ|A is pure for every A Ď I . This
enables us to define

∆A,BpΓq “ ∆|Ab∆{A

where
∆{A “ linkΓpφq “ tσ Ă B : σ Y φ P ∆u

for any facet φ of ∆|A.

This breaks down if Γ is not a matroid!
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Hopf monoids of EGPs

We don’t want to work with LLL˚ ˆGPGPGP`; we only want to consider
orderings that are bounded w/r/t p in the following sense.

Let p P GPGPGP`rI s, i.e., p Ă RI is a (possibly unbounded) GP. Define

`̀̀prI s “ tw P `̀̀rI s : σw rev Ď Npu

“ tw P `̀̀rI s : pw rev is a well-defined vertex of pu.

Now define a vector subspecies of LLL˚ ˆGPGPGP` by

OGP`rI s “ xw b p : p P GPGPGP`rI s, w P `̀̀prI sy .

Theorem
OGP`OGP`OGP` is a Hopf monoid.


