
Cones of Hyperplane Arrangements and the
Varchenko-Gel’fand Ring

Galen Dorpalen-Barry

School of Mathematics
University of Minnesota

Kansas Combinatorics Seminar
October 30, 2020



Table of contents

1. Hyperplane Arrangements and Cones

2. The Varchenko-Gel’fand Ring

3. The Associated Graded Ring

4. A worked example of the Theorem

5. Supersolvable Arrangements



Hyperplane Arrangements and Cones



Hyperplane Arrangements

This talk is about (central) arrangements of
hyperplanes A = {H1, . . . ,Hn} in a real vector space
V ∼= Rm.

Some notation:

1. C(A) is the collection of chambers of A.

2. L(A) is the set of nonempty intersection subspaces
X = Hi1 ∩ Hi2 ∩ · · · ∩ Hik .

3. We will view L(A) as a poset under (reverse) inclusion and define
the (signless) Whitney numbers of the first kind for A to be

ck(A) :=
∑

X∈L(A):
codim(X )=k

|µ(V ,X )|.

Their generating function, the Poincaré polynomial of A, is
Poin(A, t) :=

∑
k ck(A) tk .
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Hyperplane Arrangements

Example
Here is an arrangement A = {H1,H2,H3} ⊆ R2 (left) together with the
Hasse diagram of its intersection poset L(A) (right).

H2

H1

H3 R2

H1 H2H3

H1 ∩ H2 ∩ H3



Cones in an Arrangement

Definition
A cone K of an arrangement A is an intersection of (open) half spaces
defined by some of the hyperplanes of A.

Example
Let’s consider a cone K defined by H4 and H5 in the following
three-dimensional arrangement of which I’ve drawn an affine slice.

H4

H1

H2

H3

H5
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Cones in an Arrangement

As with arrangements, a cone K in an arrangement A has chambers,
intersections, and a Poincaré polynomial.

1. The chambers of K are the chambers C(K) ⊆ C(A) strictly
contained in K.

2. The nonempty intersections Lint(K) ⊆ L(A) whose intersection with
K is nonempty are called interior intersections of K,
i.e. X ∈ Lint(K) if X ∩ K 6= ∅.

3. The (signless) Whitney numbers of the first kind for K are

ck(K) :=
∑

X∈Lint(K):
codim(X )=k

|µ(0̂,X )|.

Their generating function, the Poincaré polynomial of K, is
Poin(K, t) :=

∑
k ck(K) tk .
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Poin(K, t) :=

∑
k ck(K) tk .
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Cones in an Arrangement

Example

H4

H1

H2

H3

H5

0̂

H1 H2 H3

H2 ∩ H3

+1

−1 −1 −1

+1

1

3

1

Thus Poin(K, t) = 1 + 3t + t2.



Zaslavsky’s Theorem for cones

Theorem (Zaslavsky, ’77)
For a cone K of an arrangement A with intersection poset Lint(K), we
have

#C(K) =
∑

X∈Lint(K)

|µ(V ,X )| =
n∑

k=0

ck(K)

where µ(V ,X ) denotes the Möbius function of Lint(K) and { ck(K) }
are the Whitney numbers of the cone K.

In other words #C(K) = [Poin(K, t)]t=1 .

This result is well-known when we take K to be the full arrangement.
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Zaslavsky’s Theorem for cones

Example
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Zaslavsky says: there are 1 + 3 + 1 = 5 chambers in this cone.
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Zaslavsky’s Theorem for cones

Example

H4

H1

H2

H3

H5

0̂

H1 H2 H3

H2 ∩ H3

1

3

1

Zaslavsky says: there are 1 + 3 + 1 = 5 chambers in this cone.

Goal: Construct a ring from K whose Hilbert Series is Poin(K, t).



The Varchenko-Gel’fand Ring



The Varchenko-Gel’fand Ring of a Cone

Definition
The Varchenko-Gel’fand ring of a cone K is the collection of maps
VG (K) = {f : C(K)→ Z} under pointwise addition and multiplication.

For every cone K, VG (K) has a Z-basis of indicator functions of
chambers in C(K), as shown in the example.

Example
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0

0

0 0 1

0

0

0 0 0

1

0

0 0 0

0

1

0 0 0

0

0

1
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The Varchenko-Gel’fand Ring of a Cone

Pick an orientation of A. It’s easy to see that the Varchenko-Gel’fand
ring VG (K) of a cone K is generated by Heaviside functions

xi (C ) =

{
1 if v ∈ H+

i ∩ K
0 else

for C ∈ C(K)

for each hyperplane Hi ∈ Lint(K).

Example

x1 =

0 1

1

1

1

x2 =

0 0

1

0

1

x3 =

0 0

0

1

1
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The Varchenko-Gel’fand Ring of a Cone

Example

x1 =

0 1
1

1

1

x2 =

0 0
1

0

1

x3 =

0 0
0

1

1

We can write the basis element corresponding to any chamber as a
product of Heavisde functions for its walls.

= (1− x2)x3x4 = (1− x2)x3

0 0
0

1

0



Define a map ϕ : Z[e1, . . . , en]→ VG (K) via ei 7→ xi .

I By the previous observation, this map is surjective.

I IK := kerϕ has a nice description.



Define a map ϕ : Z[e1, . . . , en]→ VG (K) via ei 7→ xi .

I By the previous observation, this map is surjective.

I IK := kerϕ has a nice description.



Signed Circuits

Recall,

I We can choose a set of normal vectors for the hyperplanes of A so
that vi is normal to Hi .

I A circuit of a collection of vectors is a minimal dependent set, i.e. a
set of linear dependent vectors such that if any single vector is
removed, the set is independent. We will view circuits as sets of
indices, so that C ⊆ {1, 2, . . . , n}.

I We’ll keep track of signed circuits where we write down the explicit
linear relations ∑

c∈C

αcvc = 0 for αi ∈ R

and we sort the elements of C into C+ and C−, depending on
whether αc > 0 or αc < 0.
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Presenting the Varchenko-Gel’fand Ring

Theorem (D.-B., ’20+)
Let K be a cone of a central arrangement A = {H1, . . . ,Hn}1. Then
VG (K) ∼= Z[e1, . . . , en]/IK where IK is generated by

1. (Idempotent) e2
i − ei for i ∈ [n],

2. (Unit) ei − 1 for i ∈ [n] such that Hi is a wall of K,

3. (Circuit)
∏
i∈C+

ei
∏
j∈C−

(ej − 1)−
∏
i∈C+

(ei − 1)
∏
j∈C−

ej for signed

circuits C = C+ ∪ C−,

This was proved in 1987 by Varchenko and Gel’fand for K = V .

This theorem is actually a corollary to a stronger theorem...

1An affine arrangement is the cone of a higher-dimensional central arrangement.
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Presenting the Varchenko-Gel’fand Ring

Theorem (D.-B., ’20+)
Let W = {i ∈ [n] | Hi is a wall of K}. For any graded monomial ordering
on Z[e1, ..., en], IK has Gröbner basis2:

1. (Idempotent) e2
i −ei for i ∈ [n],

2. (Unit) ei−1 for i ∈ [n] such that i ∈W

3. (Combination Circuit) Let C = C+ ∪ C− be a signed circuit.
I If W ∩ C± 6= ∅ but W ∩ C∓ = ∅, then∏

i∈C+\W

ei
∏

j∈C−

(ej − 1) =
∏

i∈C\W

ei −±l.o.t.

I If W ∩ C = ∅, then∏
i∈C+

ei
∏

j∈C−

(ej − 1)−
∏
i∈C+

(ei − 1)
∏

j∈C−

ej =
∑
j∈C

±
∏

i∈C−{j}

ei ± l.o.t.

2The leading term of any polynomial in IK is divisible by the leading term of some
polynomial in the Gröbner basis.



No Broken Circuit Sets

Recall

I Let C be a circuit of A. We can break C by removing the smallest
index i contained in C . We call C − {i} the broken circuit
corresponding to C .

I Let NBC (A) be the set of subsets of {1, . . . , n} containing no
broken circuits.

Definition
A set N ∈ NBC (A) is a K-NBC set if⋂

i∈N

Hi ∈ Lint(K).

Denote the set of K-NBC sets by NBC (K).
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A Basis for the Varchenko-Gel’fand Ring

Theorem (D.-B., ’20+)
Let K be a cone of a central arrangement A. Then VG (K) has{∏

i∈N

ei

∣∣∣∣∣ N ∈ NBC (K)

}

as a Z-basis.

This was proved in 1987 by Varchenko and Gel’fand for K = V .

Example
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1

1

1

x1

0 1

1

1

1

x2

0 0

1

0

1

x3

0 0

0

1

1

x2x3

0 0

0

0

1



A Basis for the Varchenko-Gel’fand Ring

Theorem (D.-B., ’20+)
Let K be a cone of a central arrangement A. Then VG (K) has{∏

i∈N

ei

∣∣∣∣∣ N ∈ NBC (K)

}

as a Z-basis.

This was proved in 1987 by Varchenko and Gel’fand for K = V .

Example

1

1 1

1

1

1

x1

0 1

1

1

1

x2

0 0

1

0

1

x3

0 0

0

1

1

x2x3

0 0

0

0

1



This is cool, but not quite what we wanted. Remember our goal:

Goal: Construct a ring from K whose Hilbert Series is Poin(K, t).



The Associated Graded Ring



The Associated Graded Ring

I For d ≥ 0, define Fd := Z · {monomials of degree ≤ d} ⊆ VG (K).

I This yields a filtration F of VG (K): F0 ⊆ F1 ⊆ F2 ⊆ · · ·
I From this filtration, we define the associated graded ring of VG (K):

grF (VG (K)) :=
⊕
d≥0

Fd/Fd−1

where we set F−1 = 0.

I The Hilbert series (or Hilbert-Poincaré Series) of grF (VG (K)) is the
formal power series ∑

d≥0

rkZ(Fd/Fd−1)td
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The Hilbert Series of grF(VG (K))

Theorem (D.-B., ’20+)
The Hilbert series of grF (VG (K)) is Poin(K, t).

This was proved in 1987 by Varchenko and Gel’fand for K = V .

Example

H4

H1
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H5

0̂

H1 H2 H3

H2 ∩ H3

+1

−1 −1 −1

+1

1

3

1

The theorem says that the Hilbert series of grF (VG (K)) is 1 + 3t + t2.
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A worked example of the Theorem



Example Computation I

Consider the following cone

H4

H1

H2

H3

H5

The cone has 5 chambers, so VG (K) ∼= Z5. Earlier we computed its
Whitney numbers, which are (1, 3, 1).
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Example Computation II

Let’s write down the Gröbner basis for IK. The Idempotent and Unit

relations are

e2
1 − e1, e

2
2 − e2, e

2
3 − e3, e

2
4 − e4, e

2
5 − e5

and e4 − 1, e5 − 1 respectively.

In order to write down the Combination

Circuit relations, we need to do some work. The signed circuits are on
the left and the relation is on the right:

{2, 5} ∪ {1} → e2(e1 − 1) = e1e2 − e2

{1, 3} ∪ {2, 4} → e1e3(e2 − 1) = e1e2e3 − e1e3

{3, 4, 5} ∪ {1} → (e1 − 1)e3 = e1e3 − e3

{2, 4} ∪ {3, 5} → 0
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Example Computation III

From this we can write down the NBC-basis of VG (K) itself. The circuits
are on the left and the broken circuits are on the right:

125→ 25

1234→ 234

1345→ 345

2345→ 345

The no broken circuit sets associated to A are:

∅,
1, 2, 3, 4, 5,

12, 13, 14, 15, 23, 24, 34, 35, 45,

123, 124, 134, 135, 145



Example Computation III

From this we can write down the NBC-basis of VG (K) itself. The circuits
are on the left and the broken circuits are on the right:

125→ 25

1234→ 234

1345→ 345

2345→ 345

The K-NBC sets are:

∅,
1, 2, 3, 4, 5,

12, 13, 14, 15, 23, 24, 34, 35, 45,

123, 124, 134, 135, 145



Example Computation IV

The NBC-basis for VG (K) is

1

1 1

1

1

1

x1

0 1

1

1

1

x2

0 0

1

0

1

x3

0 0

0

1

1

x2x3

0 0

0

0

1

So the associated graded ring is

grF (VG (K)) ∼= Z · {1} ⊕ Z · {x1, x2, x3} ⊕ Z · {x2x3}

and has Hilbert series 1 + 3t + t2.



Supersolvable Arrangements



What is a supersolvable arrangement?

Definition
An arrangement is supersolvable if there is a maximal chain ∆ of the
intersection lattice L(A) such that for every chain K , the sublattice
generated by ∆ and K is distributive3.

Example
The (n − 1)st braid arrangement is supersolvable and consists of
hyperplanes Hij = {x ∈ Rd | xi = xj} for i , j ∈ [n]. A linearly equivalent
picture of the (3− 1)st braid arrangement is below (left) together with
its intersection poset L(A) (right).

H2

H1

H3 R2

H1 H2H3

H1 ∩ H2 ∩ H3

3A lattice L is distributive if for all x , y ∈ L, we have x ∨ (y ∧ z) = (x ∨ y)∧ (x ∨ z).



What is a supersolvable arrangement?

Theorem (Björner-Ziegler, ’91)
When we order the broken circuits of a supersolvable arrangement by
inclusion, the minimal broken circuits have cardinality exactly 2.

Example
The (3− 1)st braid arrangement.

H2

H1

H3 R2

H1 H2H3

H1 ∩ H2 ∩ H3

There is one circuit consisting of all three hyperplanes {1, 2, 3}.
The broken circuit is {2, 3}.

The (n− 1)st braid arrangement is the complete graph arrangement.

Upshot: We can write down the circuits of the braid arrangement
from the circuits of the complete graph.



What does being supersolvable have to do with the
Varchenko-Gel’fand ring?

Definition
The Varchenko-Gel’fand ring of a cone K over a field F is the collection
of maps VGF(K) = {f : C(K)→ F} under pointwise addition and
multiplication.

Our previous theorems still hold for VGF(K)

(in fact they are easier because we’re now over a field!)

Theorem (D.-B. ’20+)
If A is a supersolvable arrangement, then for every cone K, the
associated graded ring gr(VGF(K)) is Koszul.

This theorem fits into a larger context.



Fitting this into a Larger Context: the Orlik-Solomon
Algebra

The Orlik-Solomon algebra is a noncommutative analogue of the
Varchenko-Gel’fand ring.

Theorem (D.-B. ’20+)
If A is a supersolvable arrangement, then for every cone K, the
associated graded ring gr(VGF(K)) is Koszul.

Theorem (Peeva ’02)
If A is a supersolvable arrangement, then the Orlik-Solomon algebra of A
is supersolvable.



Thank you!
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