
The Mathieu Group M12 and Conway’s M13-Game

Senior Honors Thesis in Mathematics

Jeremy L. Martin

under the supervision of Professor Noam D. Elkies

Harvard University

April 1, 1996



Part I

Introduction

Although the Mathieu groups are probably best known today as the first
instances of the sporadic simple groups, Mathieu’s discovery of them arose
rather from his search for highly transitive permutation groups; only later
were the Mathieu groups shown to be simple. In modern mathematics, the
Mathieu groups are studied chiefly in conjunction with sphere packing and
error-correcting codes. Conway [3] has recently proposed an unusual method
of constructing the Mathieu group M12, which has a natural extension to
a larger quasigroup, heretofore unknown, named by Conway “M13”. Con-
way’s original article leaves the investigation of this construction as an open
problem.

We begin from a classical point of view, describing the Mathieu groups in
terms of their most salient properties, multiple transitivity and simplicity.
With this material in the background, we move to a discussion of Conway’s
construction of the group M12 and the quasigroup M13, as set forth in Con-
way’s original article and a subsequent paper of Elkies [6]. In particular, we
examine a metric on M13, induced naturally by the Conway construction,
and determine the extent to which M13 is sextuply transitive. Finally, we
discuss an extension of the Conway construction, known to Conway and
explored further by Elkies, inducing signed extensions 2M13 and 2M12.

This thesis consists in part of a summary of previous work on the Mathieu
groups, and in part of original work by the author. In particular, the sections
dealing with the metrization of M13, sextuple transitivity, and antipodes in
2M13, culminating in Theorems IV.1, IV.4, IV.10, and IV.15, are my own
research, carried out under the supervision of Professor Noam Elkies. This
research was facilitated by a computer program that I designed to implement
the Conway construction.

Thanks are due, first and foremost, to my advisor, Professor Noam D. Elkies,
for his devoted attention to every aspect of this work. I would also like to
acknowledge Professor M. Krishnamoorthy for providing me with Conway’s
seminal article on M13, and finally Professor John H. Conway himself, with-
out whose insight much of this thesis would not exist.
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Part II

Multiply Transitive Groups

1 Introduction

A group G acting on a set S is said to be k-transitive if any k-tuple of
distinct elements of S can be taken to any other k-tuple by an appropriate
element of G. If that element is unique, G is exactly k-transitive. Mathieu’s
original discovery of the groups that bear his name grew out of his effort to
construct highly transitive permutation groups. In fact, groups exhibiting
greater than double transitivity are quite rare; it is known [5, 7] that no
nontrivial sextuply transitive groups (i.e., highly transitive groups other
than Sn and An) exist, and furthermore that M12 and M24 are the only
nontrivial quintuply transitive groups.

2 Construction of Highly Transitive Groups

Greenberg [5, pp. 13–15] describes an elementary method, developed by
Witt and others, for constructing multiply transitive permutation groups.
In order to best understand this method, we follow Greenberg’s presentation
of first examining how such highly transitive groups are built up internally.

Let G = G(t) act t-transitively on a set Xt = {p1, . . . , pr, q1, . . . , qt} and
define G(i) to be the stabilizer of the points {qi+1, . . . , qt} in G. The group
G(i) can be characterized equivalently as the action of G restricted to Xi =
{p1, . . . , pr, q1, . . . , qi}, or as the stabilizer of qi in G(i+1), for i < t. This last
description implies that G(i) is a proper subgroup of G(i+1), because G(i+1)

does not fix qi but G(i) does. Thus there is a strictly decreasing chain of
subgroups

G = G(t) > G(t−1) > · · · > G(1) > G(0) = H

where G(i) acts i-transitively on Xi for i = 1, . . . , t.
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Now, for all i ≥ 2, we can find an element si of G(i) which interchanges
qi−1 with qi and fixes qj for j < i − 1. (Such an si must exist, since G(i)

is i-transitive.) We can write si = aiti = tiai, where ti is the involution
(qi−1 qi) and ai ∈ H.

Proposition II.1: Given si and G(i) as above, the following properties
hold:

1. s−1
i Hsi = H (i ≥ 2);

2. s−1
i G(1)si = H (i ≥ 3);

3. (sisj)mij ∈ H, where mij =





1 : i = j
3 : |i− j| = 1
2 : |i− j| > 1

;

4. G(i) = G(i−1) ∪ G(i−1)siG
(i−1).

Only (4) requires any detailed proof. Since G(i−1) < G(i) and si ∈ G(i) by
definition, G(i) contains G(i−1) ∪ G(i−1)siG

(i−1). Moreover, any permutation
of G(i) which fixes qi lies in G(i−1). On the other hand, if some element
σ ∈ G(i) does not fix qi, then we must find α, β ∈ G(i−1) such that σ = αsiβ.
In fact, it suffices to produce α, β such that σ ∼= αsiβ mod H (i.e., σ and
τ = αsiβ act identically on all qj). This follows since h = τ−1σ fixes all qj

and so lies in H < G(i−1), whence σ = τh = αsi(βh), and βh ∈ G(i−1).

Choose some α ∈ G(i−1) taking qi−1 to σ(qi), and let cj = α−1(σ(qj)). Then
choose β ∈ Gi−1 such that β(qj) = s−1

i (cj) for all j < i. Therefore:

α(si(β(qi))) = α(si(qi)) = α(qi−1) = σ(qi)

and

α(si(β(qj))) = α(cj) = σ(qj) (j < i)

Hence αsiβ and σ act identically on the qj , and we are done. 2

From this elementary analysis, it is apparent how the construction of multi-
ply transitive groups will proceed. We begin with a group G(1) acting transi-
tively on a set X1 = {p1, . . . , pr, q1}, with a subgroup H = Stabq1 G(1). We
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then successively adjoin elements q2, . . . , qt to X1 and permutations s2, . . . , st

to G(1) satisfying the conditions of Proposition II.1, producing a chain of
groups

H < G(1) < · · · < G(i) = G(i−1) ∪ G(i−1)siG
(i−1) < · · · < G(t),

where G(i) acts i-transitively on {p1, . . . , pr, q1, . . . , qi}.
To make this procedure explicit, let G(i) be a group acting i-transitively on
Xi = {p1, . . . , pr, q1, . . . , qi}. Adjoin a new element qi+1 to form Xi+1 =
Xi ∪ {qi+1}. Let si+1 be a permutation which interchanges qi with qi+1

and fixes qj for j < i. That is, si+1 = ai+1ti+1, where ti+1 is the involution
(qi+1 qi) and ai+1 ∈ H.

Theorem II.2 (Greenberg): The set G(i+1) = G(i) ∪ G(i)si+1G
(i) acts

(i + 1)-transitively on Xi+1.

Proof: It is sufficient to show that any i-tuple (x1, . . . , xi+1) in Xi+1 can
be transformed to (q1, . . . , qi+1) by an appropriate permutation σ ∈ G(i+1).
If xi+1 = qi+1, then the desired σ can be found in G(i). Otherwise, choose
β ∈ G(i) taking xi+1 to qi, and choose α ∈ G(i) taking si+1(β(xj)) to qj

for j < i. Since α(si+1(β(xi+1))) = α(si+1(qi)) = α(qi+1) = qi+1, the
permutation αsi+1β is the desired element of G(i)si+1G

(i). 2

The limitation of this method is that the set G(i+1) need not be a group.
Certainly G(i) is closed under multiplication, and G(i)si+1G

(i) is closed under
both left and right multiplication by G(i), but there is no guarantee, in
general, that the product of two elements of G(i)si+1G

(i) must lie in G(i+1).
However, Witt showed the following result (discussed without proof in [5,
p. 15]; the theorem is stated slightly differently in [7, pp. 220–1], which
facilitates the construction of transitive extensions:

Theorem II.3 (Witt): Let a group G(2) = G(1) ∪ G(1)s2G
(1) act doubly

transitively on {p1, . . . , pr, q1, q2}, where G(1) = Stabq2 G(2). Choose ex-
tension elements {s2, . . . , sn} satisfying the conditions of Proposition II.1.
Then G(i+1), defined recursively as G(i) ∪ G(i)si+1G

(i), is a group.

Hence, if we can find the right permutations to adjoin to create the chain
G(1) < · · · < G(t), Theorem II.3 ensures that G(i+1) = G(i) ∪ G(i)si+1G

(i)
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is “small.” (Recall that we are trying to construct a transitive group other
than a symmetric or alternating group.) We can compute the order of G(i+1)

easily: since G(i) = Stabqi+1 G(i+1), the index [G(i+1) : G(i)] equals r + i, the
number of points permuted by G(i+1). Hence |G(i+1)| = (r + i) · |G(i)|.

3 Constructions of the Mathieu Groups

The following constructions of the Mathieu groups, borrowed directly from
[5, pp. 15–21], proceed according to the method described above, thus con-
firming the groups’ multiple transitivity. Since repeatedly checking that
Proposition II.1 is satisfied for each step in the chain would be tedious, we
omit these verifications (which are provided by Greenberg), giving simply
the initial groups and extension elements at each stage. (Conway and Sloane
[4, pp. 273,274] give generators and relations for the Mathieu groups, as well
as different constructions which are more pertinent to the Mathieu groups’
role as groups of automorphisms of the Golay codes, and prove the quintuple
transitivity of M12 and M24 by other means.)

3.1 Constructing M10, M11 and M12

Let F9 denote the field of nine elements, whose group of units is F ∗
9 =

F9 \ {0}. Let α be a primitive element in F9 (i.e., one generating the cyclic
group of units). Note that α+α2 = 1, facilitating arithmetic in F9 [5, p. 16].
For a ∈ F ∗

9 , define γa to be 1 if a is a square, 3 otherwise. Since the eighth
power of any element of F ∗

9 is 1, the map γ is a homomorphism from F ∗
9 to

the multiplicative group (Z/8Z)∗.

For a ∈ F ∗
9 , let σa,0 : F9 → F9 be the map taking x to axγa. The set of

all such maps is a group, because σa,0(σb,0(x)) = a(bxγa)γb = (ab)x(γ(ab) =
σab,0(x) (using the fact that the eighth power of any element in F ∗

9 is 1).
Moreover, it is transitive on F ∗

9 because σa,0(1) = a. This set of maps will
be our group G(1). Since every map in G(1) fixes 0, we will let q1 = 0 and
p1, . . . , p8 be the nonzero elements of F9. Note that the stabilizer of any pi,
i.e., the group H, is trivial.

The next link in our chain is the group G(2), consisting of all maps σa,b
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taking x to axγa + b, where a ∈ F ∗
9 , b ∈ F9. Using the terminology of

Theorem II.2, G(2) is obtained by adjoining to G(1) the involution s2 = σ−1,1,
which interchanges x with 1− x. The group G(2) has order 72 (since there
are 8 choices for a and 9 choices for b) and is doubly transitive, since for any
c, d ∈ F9, c 6= d, the map σc−d,d takes 1 to c and 0 to d.

To obtain the groups G(3), G(4), and G(5), we adjoin points q3 = ∞, q4 = V ,
and q5 = W to F9 (the naming of the points is Greenberg’s), and the per-
mutations s3,s4,s5 described below. (Note that the conditions of Proposi-
tion II.1 are satisfied.)

s3 : x 7→ x−1;

s4 : x 7→ α2x + αx3 (x ∈ F9), V ←→∞;

s5 : x 7→ x3, V ←→ W.

The following groups are produced. (Note that the group M10 = G(3), unlike
the other Mathieu groups, is not simple; it has a subgroup of index 2 which
is isomorphic to the alternating group A6 [4, p.272].)

M10 = G(3): 3-transitive on F9 ∪ {∞}, order 10 · |G2| = 720;
M11 = G(4): 4-transitive on F9 ∪ {∞, V }, order 11 · |G3| = 7920;
M12 = G(5): 5-transitive on F9 ∪ {∞, V, W}, order 12 · |G4| = 95040.

3.2 Constructing M22, M23 and M24

Let F4 denote the field of four elements, with a primitive element ρ. Let
P4 denote the projective plane of order four, which can be realized as
F 3

4 \ {(0, 0, 0)} modulo the relation x = kx. We will refer to the elements
of P4 by any of the points of their lifts in F 3

4 \ {0, 0, 0}.
Our doubly transitive group G(2) will be the projective special linear group
PSL3(F4), which is the quotient of the special linear group SL3(F4) by its
center Z consisting of all maps x 7→ kx, k ∈ F4 \ {0}. Since there are three
choices for k and the cube of any nonzero element of F4 is 1, the group
Z is cyclic of order three. To compute |G(2)|, first note that |GL3(F4)| =
(43−1)(43−41)(43−42) = 181440 [7, p. 162]. Since [GL3(F4) : SL3(F4)] = 3
and [SL3(F4) : Z] = 3, we obtain |G(2)| = |PSL3(F4)| = 181440/32 =
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20160. Moreover, G(2) is doubly transitive on P4 because SL3(F4) is doubly
transitive on F 3

4 , and the quotient map from SL3(F4) to PSL3(F4) is the
same as that from F 3

4 to P3.

Let q2 = (1, 0, 0) and q1 = (0, 1, 0). The group G(1) = Stabq2 G(2) may be
presented as the set of matrices of the form




1 a b
0 c d
0 e f




where a, b, c, d, e, f ∈ F4 and cf − de = 1. Then G(0) = Stabq1,q2 G(2) is the
set of matrices in the above form where a = e = 0 (and thus cf = 1).

To obtain the groups G(3), G(4), and G(5), we add points q3, q4, q5 to P4, and
adjoin the following permutations s3, s4, s5 to G(2). (Note that, as required,
we have si fixing qj whenever j ≤ i− 2.)

s3 : (x, y, z) 7→ (x2 + yz, y2, z2) ((x, y, z) 6= (1, 0, 0)), q2 ←→ q3;

s4 : (x, y, z) 7→ (x2, y2, ρz2), q3 ←→ q4;

s5 : (x, y, z) 7→ (x2, y2, z2), q4 ←→ q5.

Once again, the conditions of Proposition II.1 hold at each step, and the
resulting groups are as follows:

M22 = G(3): 3-transitive on P4 ∪ {q3}, order 22 · |G2| = 443520;
M23 = G(4): 4-transitive on P4 ∪ {q3, q4}, order 23 · |G3| = 10900960;
M24 = G(5): 5-transitive on P4 ∪ {q3, q4, q5}, order 24 · |G4| = 244823040.

4 The Simplicity of the Mathieu Groups

Rotman [7, p. 226] proves that the Mathieu groups are simple. We omit the
proof, since it rests on a substantial amount of nonelementary group theory
and will not be used in subsequent sections. A more elementary proof of
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the simplicity of M11 and M23 is given by Chapman [2], who further notes
that the proof extends to M12 and M24 via a preliminary result also used in
Rotman’s proof.

Part III

The Golay Codes and the Mathieu
Groups

1 Introduction

The Golay codes are two error-correcting codes of length 12 and 24, of
substantial importance in coding theory and sphere packing. The Mathieu
groups appear in the study of the automorphism groups of the Golay codes.
The following discussion of the relationship between the Golay code C12

of length 12 and the Mathieu group M12 is largely due to chapter 10 in
Conway and Sloane [4]. A roughly analogous relationship, which we shall
not explore, holds between the Golay code C24 and the Mathieu group M24.

2 The Golay Code C12

Let Ω denote the projective line of order eleven, realized as F11 ∪ {∞} =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,∞}. (We borrow the computer scientist’s conven-
tion of using the single letters A, B, C to denote the numbers 10, 11, 12.)
We distinguish the following important subsets of Ω:

Ω′ = F11 = Ω \ {∞}; Q = {x2 : x ∈ F11} = {0, 1, 3, 4, 5, 9};
Q′ = Q \ {0} = {1, 3, 4, 5, 9}; N = Ω \Q = {2, 6, 7, 8, A,∞}.

(The names Q and N refer to the quadratic residues and nonresidues, re-
spectively, modulo 11.) Arithmetic in Ω is an extension of that in F11, with
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the additional provisions that ∞+a = ∞ for any a ∈ Ω (including ∞ itself),
a/0 = ∞ for a ∈ Ω \ {0}, and a/∞ = 0 for a ∈ Ω′.

Now let X be a 12-dimensional vector space over F3, equipped with a basis
{xi} indexed by i ∈ Ω. Define

w∞ =
∑

i∈Ω

xi

and

wi =

( ∑

n∈N

xn−j

)
−


∑

q∈Q

xq−j


 , i ∈ Ω′.

The Golay code C12 consists of the vectors in the space spanned by {wi} for
i ∈ Ω. A complete investigation of the properties of C12 is beyond the scope
of this paper. We will prove herein merely that the code has dimension 6
and is self-dual, as a preamble to our discussion of the relationship between
C12 and M12. In fact, the Golay code is the only code of minimal distance
greater than 3 satisfying these conditions [4, p. 434].

The following definition will be useful. Let wi,j denote the projection of wi

onto the vector space spanned by xj . By the definition of the vectors wi,

wi,j =
{

1 : i + j ∈ N
−1 : i + j ∈ Q

Conveniently, wi,j depends only on the sum i + j. In particular, wi,j = wj,i,
which is the first suggestion of the self-duality of C12. The next theorem,
although we use it simply as a stepping-stone in the proof that dim(C12) = 6,
illuminates some of the structure of C12 as an error-correcting code.

Lemma III.1: Any number z ∈ F11 \{0} can be written exactly three ways
as q − q′ and exactly two ways as n− n′, where q, q′ ∈ Q and n, n′ ∈ N .

Proof: By inspection; simply write out all such differences q−q′ and n−n′.
(Those familiar with design theory will recall that if p is a prime congruent
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to 3 modulo 4, then the set of quadratic residues modulo p constitutes a
difference set in Fp, which implies the Lemma.)

At this point, we introduce one more notational convenience: “x ∼ y” will
mean that x and y have the same quadratic character, i.e., either they both
lie in Q or both lie in N .

Theorem III.2: For any distinct j, k ∈ Ω, wj and wk agree in exactly six
places. (I.e., wj,i = wk,i for exactly six values of i ∈ Ω.)

Proof: If j = ∞, then w∞,i = 1 for all i, but wj,i = 1 exactly six times
when j ∈ Ω. Moreover, since wi,j = wi+j,0, it suffices to prove the statement
of the theorem in the case where j = 0 and k ∈ Ω \ {0}. Note that w0,a =
w0,b ⇐⇒ a ∼ b.

By Lemma III.1, there exist points {x1, . . . , x5} and {y1, . . . , y5} of Ω′ such
that xn ∼ yn and xn−yn = k for n = 1 . . . 5. We claim that wk,i = w0,i ⇐⇒ i
is either ∞ or one of the yn.

“⇒”: w0,i = wk,i = w0,k+i, so i ∼ (k + i). If i 6= ∞, then (k + i, i) must be
one of the (xn, yn).

“⇐”: Clear when i = ∞. If i = yn, then wk,yi
= w0,k+yi

= w0,xi = w0,yi

(since xi ∼ yi).

Hence the theorem is proven. 2

Corollary III.3: For any j, k ∈ Ω,

∑

i∈Ω

(wi,jwi,k) = 0.

Proof: If j = k, then the sum is 12 = 0 (since we are working in F3). If
j 6= k, the sum is 6(1) + 6(−1) = 0. 2

We next prove that dim(C12) = 6. That the dimension is no greater than
6 follows from Corollary III.3, which by bilinearity implies that the scalar
product of any two vectors in W is zero. This in turn implies that W
is contained inside its dual space W⊥, so dim(W ) ≤ dim(W⊥). Since
dim(W ) + dim(W⊥) = 12, it follows that dim(W ) ≤ 6.
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To prove that dim(C12) is exactly 6, we show that the six vectors {wi},
i ∈ (Q ∪ {∞}), are linearly independent. We use the fact that if W ′ ⊂ W
is a linear space spanned by vectors S ⊂ {wi}, and there exists a pair
j, k ∈ Ω such that wi,j is a multiple of wi,k for all wi ∈ S, then the
same property holds for any vector of W ′ by linearity. Conversely, any
wi not satisfying this property does not lie in W ′. In this fashion, using
(j, k) = (5, 9), (4, 5), (3, 9), (1, 3), (1, 4), we learn respectively that each
of w1, w3, w4, w5, w9 does not lie in the space spanned by the other four.
Hence these five vectors are linearly independent. Suppose w∞ lies in this
space. Then we have a linear relation

w∞ =
∑

i∈Q′
ciwi (ci ∈ F3).

Now, w∞,i = 1 for all i. Therefore, for any pair j, k, the sum of all ci such
that wi,j = −wi,k must be 0. Fixing j = ∞ and letting k equal 1, 3, 4, 5, 9,
we learn respectively that c3 + c4, c1 + c9, c1 + c5, c4 + c9, c3 + c5 are all
zero. Thus each individual ci can only be zero, and hence w∞ is linearly
independent as desired. 2

Having gained some familiarity with the structure of C12, let us examine its
group of automorphisms. Define linear operators A,B,C, D on X as follows:

A : xi 7→ xi+1,
B : xi 7→ x3i,
C : xi 7→ εx−1/i,

D : xi 7→ xδi,

where ε = 1 for x ∈ Q and −1 for x ∈ N , and δ is the permutation
(2 A)(3 4)(5 9)(6 7).

It can be verified that A,B, C, D preserve C12. Specifically,

A : wi 7→ wi−1,
B : wi 7→ w3i,
C : wi 7→ −εw−1/i,

D : wi 7→ wδi.
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Hence the group G = 〈A,B, C, D 〉 is a subgroup of the automorphism group
of C12. (In fact, G contains every automorphism of C12; this is stated but not
proven in [4].) G is a group 2M12, i.e., it has a normal subgroup N , cyclic of
order 2, and the quotient group G/N is isomorphic to M12. (The involution
generating N is the permutation C2, which takes every basis vector xi to
its negative.) However, G is a “non-splitting extension” of M12, i.e., it does
not have a subgroup isomorphic to M12 [4, pp. 271–2].

3 Steiner Systems

A Steiner system S(t, k, v) is defined as a set of v points, organized into(v
t

)
/
(k

t

)
blocks of k points each, such that any subset of t points is contained in

exactly one of the blocks [5, 7]. The projective plane of order n, for instance,
is a Steiner system S(n2 + n + 1, n + 1, 2). Note that a Steiner system need
not exist for every choice of parameters t, k, v; in particular

(v
t

)
/
(k

t

)
must be

an integer. An open problem in design theory is to determine necessary and
sufficient relations among the parameters for S(t, k, v) to exist, as well as
to determine how many Steiner systems exist, up to isomorphism, for each
values of v, k, and t.

The Mathieu groups can be realized as automorphism groups of certain
Steiner systems [4, 5]. (An automorphism of a Steiner system is a permuta-
tion of the v points which carries every block to a block.) In particular, the
supports of the codewords of C12 constitute a Steiner system S(5, 6, 12), of
which M12 is the automorphism group. The stabilizer of one point, the group
M11, is the automorphism group of a Steiner system S(4,5,11). Analogously,
the group M24 is the automorphism group of a Steiner system S(5, 8, 24)
obtained by taking the supports of the codewords of the Golay code C24,
and M23 and M22, the stabilizers of one and two points respectively, are the
automorphism groups of S(4, 7, 23) and S(3, 6, 22). Although we are primar-
ily concerned herein with examining the Mathieu groups as automorphism
groups of the Golay codes, their role as automorphisms of Steiner systems
is also important in design theory.
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Part IV

The Conway Game and M13

1 Introduction

Let P3 denote the projective plane of order 3. The standard construction
of P3 is to remove the zero point from a three-dimensional vector space
over the field F3 and then identify each point x with −x, obtaining a space
with (33 − 1)/2 = 13 points. However, we will be concerned only with
the geometric properties of the projective plane. The 13 points of P3 are
organized into 13 lines, each line containing four points. Every point lies on
four lines, any two points lie together on a unique line, and any two lines
intersect at a unique point. We shall borrow the following numbering of the
lines and points of P3 from Conway’s article. (Note that the numbering is
self-dual, in the sense that point i lies on line j iff point j lies on line i.)

Line Points Line Points
0 0, 1, 2, 3 7 3, 5, 8, B
1 0, 4, 5, 6 8 3, 4, 7, A
2 0, 9, A, B 9 2, 4, B,C
3 0, 7, 8, C A 2, 6, 8, A
4 1, 4, 8, 9 B 2, 5, 7, 9
5 1, 6, 7, B C 3, 6, 9, C
6 1, 5, A, C

Conway [3] proposed the following game, which resembles Sam Loyd’s well-
known “15-puzzle.” Place twelve numbered counters on the points 0 . . . B
of P3 and leave the thirteenth point C blank. (The empty point will be
referred to throughout as the “hole.”) Let the location of the hole be p;
then a primitive move of the game consists of selecting one of the lines
containing the hole, say {p, q, r, s}. Move the counter on q to p (thus moving
the hole to q), then interchange the counters on r and s. Following Elkies
[6], we will use the notation ιpq to refer to this particular primitive move. A
move is any sequence ιabιbc . . . ιxyιyz of primitive moves. For brevity, we will
refer to a move by its path abc . . . xyz (specifically, the path that the hole
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traces through P3) and say that that path produces the move ιabιbc . . . ιxyιyz.
Finally, the length of a move is the number of its constituent primitive moves,
i.e., |{ιab, . . . , ιyz}|.
There is an obvious characterization of a move as a permutation in S13,
operating on the points of P3. By limiting our consideration to only those
moves which return the hole to its starting point (i.e., those produced by
a path abc . . . xyz with a = z = C), we obtain the Conway game group.
This group, which we shall denote by GC , is a subgroup of the symmetric
group S12 of permutations of the twelve points 0, . . . , B, and the group
operation of GC is concatenation of paths. Conway [3] stated, but did not
prove explicitly, that GC is isomorphic to the Mathieu group M12. We shall
subsequently verify this isomorphism.

The set of all moves (including those not fixing the hole) is given the name
M13 by Conway. It is important that M13 is not a group, as not all con-
catenations are legal: for two paths P = x1 . . . xa and P ′ = y1 . . . yb, the
path PP ′ is well-defined only if xa = y1. (This difficulty does not arise in
GC , where x1 = xa = y1 = yb = C.) M13 can nevertheless be thought of as
a “quasigroup” permuting the thirteen points of P3. Indeed, M13 exhibits
certain limited forms of sextuple transitivity, which we shall later explore
more fully.

Elkies [6] investigated an extension of the Conway game (known to Conway)
in which the counters r and s are flipped upside down as well as interchanged.
In this “signed Conway game”, the set of all closed paths is a subgroup of
2M12, and the set of all paths is a quasigroup 2M13, which bears a similar
relation to M13 as 2M12 does to M12. One consequence hereof is that GC

is a subgroup of M12. Although this constitutes half of the verification of
Conway’s claim, we defer presenting the particulars of Elkies’ argument until
later, since the inclusion result is inextricable from the main thrust of his
work, which was to investigate the extension of M12 and M13 to their double
covers 2M12 and 2M13.

2 The Computer Construction of M12 and M13

I have written a computer program “MAKE–M13” (reproduced in the Ap-
pendix) to generate moves of the Conway game and compute the element of
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M13 produced by each. The algorithm is simple. A list L of permutations
in M13, and paths that produce them, is maintained throughout execution.
Paths are examined in increasing order of length; paths of the same length
are examined in dictionary order (using 0 < 1 < · · · < 9 < A < B < C.) For
each path P , the program first computes the permutation x produced by P ,
then checks to see if x ∈ L. If so, P is ignored and the next path examined;
otherwise, P and x are placed in L, and the count of elements is incre-
mented. Thus we are guaranteed to find a path of minimal length for each
permutation in M13. The algorithm was terminated when 1235520 = |M13|
elements had been found, as Elkies’ results proved that there could be no
more.

That MAKE–M13 was able to generate |M12| = 95040 distinct permutations
fixing the hole completes the verification that M12 = GC . Rather than list
all 95040 elements of the group here, I give two constructions of M12, using
particular elements found by MAKE–M13. Both imply that M12 < GC ,
which, combined with Elkies’ proof of the reverse inclusion, verifies Conway’s
assertion.

1. The generators argument. Conway describes M12 as a subgroup of
the symmetric group S12 acting on the points 0, . . . , 9, X,∞ [4, p. 273] and
gives generators for M12 as follows:

α = (0 1 2 3 4 5 6 7 8 9 X)(∞),
γ = (0 ∞)(1 X)(2 5)(3 7)(4 8)(6 9),
δ = (0)(1)(2 X)(3 4)(5 9)(6 7)(8)(∞).

Let Conway’s 0, . . . , 9, X,∞ correspond to points 1, 6, 9, A,B, 5, 8, 4, 2, 7, 3, 0
of P3. The following moves of the Conway game induce permutations corre-
sponding to α, γ and δ respectively. (Here and subsequently, I use the paths
found by MAKE–M13, which do not purport to be unique.)

Path Permutation
CB7485C (1 6 9 A B 5 8 4 2 7 3)(0)

C014C589C (0 1)(3 6)(5 9)(4 A)(2 B)(7 8)
C357A2C (0)(1)(2)(6)(3 9)(4 8)(5 7)(A B)

15



2. The quintuple transitivity argument. We can construct M12 from
elements of GC by mimicking the construction given in II.3.1. We make the
following correspondence between the points of F9 ∪ {∞, V,W} and the
points of P3 (recall that α denotes a primitive element of F9):

F9 ∪ {∞, V,W}: 1 α α2 α3 α4 α5 α6 α7 0 ∞ V W

P3: 0 1 2 4 7 6 5 3 9 8 A B

The group H = G(0) is trivial, since M12 is exactly quintuply transitive.
The group G(1) has eight elements and acts exactly 1-transitively on the set
{0, . . . , 7}. The nonidentity elements of G(1) are listed below; the names
chosen for the elements of G(1) emphasize its isomorphism to a quaternion
group. The first column denotes the value of a for which the permutation
corresponds to the map x 7→ axγa of II.3.1.

a Name Path Permutation
α i C106379C (0 1 7 6)(2 3 5 4)
α2 j C20517AC (0 2 7 5)(1 4 6 3)
α3 k C27B403C (0 4 7 3)(1 5 6 2)
α4 −1 C92059C (0 7)(1 6)(2 5)(3 4)
α5 −i C379601C (0 6 7 1)(2 4 5 3)
α6 −j C17A502C (0 5 7 2)(1 3 6 4)
α7 −k C30427BC (0 3 7 4)(1 2 6 5)

To extend G(1) to the groups G(2), . . . , G(5) = M12, it suffices to exhibit
elements of GC corresponding to the s2, . . . , s5 of section II.3.1. These per-
mutations are as follows:

Name Path Permutation
s2 C306C (0 9)(1 2)(3 6)(4 5)(7)(8)(A)(B)
s3 C0250C (0)(1 3)(2 5)(4 6)(7)(8 9)(B)(C)
s4 C0340C (0)(1 2)(3 4)(5 6)(7)(8 A)(9)(B)
s5 C09789C (0)(1 4)(2 5)(3 6)(7)(8)(9)(A B)
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3 Metrizing M13 Via The Conway Game

Define the depth D(x) of a permutation x ∈ M13 to be the length of the
shortest move of the Conway game which produces x. This definition arises
naturally from the algorithm used to construct GC — examine each path, in
increasing order of length, and retain only the shortest path producing any
permutation. A natural question to ask about the Conway game construc-
tion is: What are the diameters of GC = M12 and M13, i.e., the maximal
depth of any element? Additionally, which elements of M12 and M13 are the
“deepest”?

The first step towards answering this and similar questions is to note that
the Conway game provides us with a metric on M13. Let x, y be two elements
in M13, produced by paths x1 . . . xs and y1 . . . yt respectively, where x1 =
y1 = C. We would like to define the distance between a and b as the length
of the shortest path from a to b. This can be realized as d(x, y) = D(x−1y).
Note that the path of x−1y need not start at point C, so it may be necessary
to relabel the points of P3 to find an element equivalent to x−1y. Also note
that the depth of an element is simply its distance from the starting position,
represented by the identity permutation.

It is easy to check that (M13, d) satisfies the axioms of a metric space:

1. d(x, y) = 0 ⇐⇒ x−1y = 1 ⇐⇒ x = y;

2. (Symmetry) d(x, y) = d(y, x), because if a path P induces x−1y, then
the reversal of P induces (x−1y)−1 = y−1x;

3. (Triangle inequality) If d(x, y) = a and d(y, z) = b, then by definition
there exist paths P and Q of lengths a and b and producing x−1y and
y−1z respectively. Then the concatenation PQ has length a + b and
produces the permutation x−1yy−1z = x−1z. Having exhibited a path
(albeit not necessarily the shortest) of length a + b producing x−1z, it
follows that d(x, z) ≤ a + b = d(x, y) + d(y, z).

The first question posed, to find the diameters of M12 and M13, can be
answered empirically via MAKE–M13. In fact, we can state the number
of elements of M12 and M13 at every depth, based on the MAKE–M13
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construction; we have found no independent way to obtain results about the
distribution.

Theorem IV.1: The depth distributions of M12 and M13 are as follows:

Depth Permutations in M12 Permutations in M13

0 1 1
1 0 12
2 0 108
3 54 918
4 540 7344
5 5184 57852
6 25173 344925
7 55044 733500
8 9036 90852
9 8 8

Total 95040 1235520

Corollary IV.2: M12 and M13 both have diameter 9.

Remarkably, only eight permutations of depth 9 exist; the other 95032 were
producible by shorter paths. These permutations were as follows:

Path Permutation
C12C60798C (0)(7)(8)(15A)(24B)(369)
C12C76803C (0)(7)(8)(1A5)(2B4)(396)
C02C59A13C (1)(5)(A)(078)(2B4)(369)
C02C56A13C (1)(5)(A)(087)(24B)(396)
C01C46B23C (2)(4)(B)(15A)(078)(396)
C01C49B23C (2)(4)(B)(087)(1A5)(369)
C01C436B9C (3)(6)(9)(078)(1A5)(24B)
C01C64932C (3)(6)(9)(087)(15A)(24B)

As is apparent, each of these permutations decomposes into separate ac-
tions on the four sets L′3 = {0, 7, 8}, L′6 = {1, 5, A}, L′9 = {2, 4, B}, L′C =
{3, 6, 9} — the other three points on each of the four lines of P3 through the
point C. Together with the identity, they constitute a subgroup N < M12,
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isomorphic to the abelian group (Z/3Z)2. It will be observed that any two
distinct elements of N have the same action on exactly one of the 3-sets L′i.
Thus N is isomorphic to the tetracode [4, p. 81].

The nine elements of N are “antipodal,” i.e., at maximal distance not only
from the identity but from each other, because N is a group: d(a, b) = 9 for
a, b ∈ N , a 6= b, since ab−1 ∈ N \ {1} has depth 9. As one consequence, we
can partition M12 into the 95040/9 = 10560 left cosets of N and observe that
the distance between two distinct elements x, y ∈ M12 is maximal (i.e., 9) if
and only if they lie in the same left coset (since y = xn for some n ∈ N \{1},
so d(x, y) = D(x−1y) = D(n) = 9).

Knowing the diameter of M13 provides us with an algorithm for “solving” the
Conway game, i.e., finding a move between any two positions P, P ′ ∈ M13. If
d(P, P ′) = 9, then the desired move will be an element of the tetracode group
N , so this possibility can be dealt with in at most nine trials. Otherwise,
there must be some position at distance≤ 4 from both P and P ′ (specifically,
the position reached halfway along the move between P and P ′). So we list
all positions at distance ≤ 4 from P , as well as all those at distance ≤ 4
from P ′, merge the two lists and check for duplicates. From Theorem IV.1,
there are only 8383 positions for each of P and P ′, so this algorithm is
computationally much more efficient than searching through all 1235520
elements of 2M13.

4 M13 and Sextuple Transitivity

Conway’s assigning the name “M13” to the quasigroup of all moves in the
game is intended to suggest that it exhibits certain properties akin to the “le-
gitimate” Mathieu groups. One natural question is whether M13 is sextuply
transitive. That is, given any six counters and six points of the projective
plane, can an element of M13 be found which moves the six counters to the
six points in order? (After all, M13 has thirteen times as many elements
as M12, which acts quintuply transitively on a set of twelve points and ap-
pears inside M13 as the stabilizer of the hole.) Since M13 is not a group, the
question actually has two distinct parts, depending on whether we choose
the six counters or the six points first. We examine each approach in turn.
In both cases, the results of MAKE–M13 were invaluable as a source of ed-
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ucated guesses about sextuple transitivity, which could then be proven or
disproven independently.

4.1 Sextuple Transitivity On Counters

Let S = {X1, . . . , X6} be the set of six counters initially located at positions
p1, . . . , p6 respectively. We will say that S is “6-transitive” (abbreviated 6T)
if for any ordered sextuple (j1, . . . , j6) of points of P3, there exists an element
of M13 carrying each counter Xi to the corresponding point ji. Otherwise, S
is “non-6-transitive” (to be abbreviated N6T). Note that if we allow the hole
to be one of the “counters,” then S is automatically 6T, as we can first take
the hole to its desired ending point, then choose an element of M12 moving
the five other counters anywhere, by quintuple transitivity. The remainder
of this section is concerned with investigating what happens when six “real”
counters are chosen.

Lemma IV.3: S is 6T ⇐⇒ no two elements of M13 carry the counters S
to the same positions.

Proof: By the pigeonhole principle, since |M13| = the number of ordered
distinct sextuples of P3, which is 13 · 12 · 11 · 10 · 9 · 8 = 1235520.

Theorem IV.4: Any 6-set S is N6T.

Proof: We examine three simple cases first, then show that the general case
can be reduced to one of them.

Lemma IV.5: S is N6T if for some q ∈ M13, there is a line L of P3 which
contains the hole and contains no counters of S.

Proof: Any move along L produces a new element of M13 in which the
counters of S occupy the same positions. Thus S is N6T by Lemma IV.3.2

Lemma IV.6: S is N6T if for some q ∈ M13, there is a line L of P3 which
contains neither the hole nor any counters of S.

Proof: Play q, then move to any point on L. In the resulting position, no
counters of S lie on L. Thus S is N6T by Lemma IV.5. 2
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Lemma IV.7: S is N6T if for some q ∈ M13, there is a line L of P3 which
does not contain the hole and contains exactly one counter Xi ∈ S.

Proof: Play q, then move the hole to the point holding Xi. In the resulting
position, L contains the hole but no counters of S. Thus S is N6T by
Lemma IV.5. 2

For q = 1 and any 6-set of counters S, we will find a line satisfying the
condition of one of the above lemmas.

Let L1, . . . , L4 be the lines incident to point C (the “hole” in the starting
position) and define di = |S ∩ Li|. By Lemma IV.5, we need investigate
only those sets S such that di > 0 for all i. Reindex the lines Li so that
d1 ≤ d2 ≤ d3 ≤ d4. Since d1 + d2 + d3 + d4 = |S| = 6, there are two cases
to consider: either d1 = d2 = d3 = 1 and d4 = 3, or else d1 = d2 = 2 and
d3 = d4 = 2.

Case 1: (d1, d2, d3, d4) = (1, 1, 1, 3). Without loss of generality, assume
j1 ∈ L1, j2 ∈ L2, j3 ∈ L3, j4, j5, j6 ∈ L4.

Subcase 1A: j1, j2, j3 are collinear. The line containing them, M , must
intersect L4 somewhere other than C, since L1 already contains both C and
j1. Assume without loss of generality that M intersects L4 at j6. The lines
M and L4 contain the points j1, . . . , j5, C between them, hence either of the
two other lines incident to j6 satisfies the condition of Lemma IV.7. Hence
S is N6T.

Subcase 1B : j1, j2, j3 are not collinear. Then the three lines M1,M2,M3,
defined by any two of j1, j2, j3, are distinct. Each such line intersects L4 in
a different place, so the following labelling is justified:

M1 = {j1, j2, j4, x},
M2 = {j1, j3, j5, y},
M3 = {j2, j3, j6, z}.

We have produced two lines containing j4; they are L4 = {j4, j5, j6, C} and
M1 = {j1, j2, j4, x}. Of the other two lines, the one that does not contain j3

satisfies the condition of Lemma IV.7. Hence S is N6T.
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Case 2: (d1, d2, d3, d4) = (1, 1, 2, 2). Without loss of generality, assume
j1 ∈ L1, j2 ∈ L2, j3, j4 ∈ L3, j5, j6 ∈ L4.

Let x be the fourth point on L4, i.e., L4 = {C, j5, j6, x}. Let M1,M2,M3

be the other three lines incident to x. None of the Mi contains any of
C, j5, j6, since each intersects with L3 at x. Thus no matter how the points
j1, j2, j3, j4 are distributed among the Mi, at least one of M1,M2,M3 must
contain no more than one of {j1, . . . , j6}. This Mi satisfies the condition of
Lemma IV.7, and so S is N6T. 2

4.2 Sextuple Transitivity On Points of P3

Let X = {x1, . . . , x6} be a set of distinct points of P3. We will employ an
abuse of language similar to that of the previous section: X will be called
“6-transitive” (6T) if for any ordered sextuple of counters C = {c1, . . . , c6},
there exists an element of M13 taking C to X, i.e., moving each counter ci

to the corresponding point xi. Otherwise, X is “non-6-transitive” (to be
abbreviated N6T).

Lemma IV.8: X is 6T ⇐⇒ no two distinct elements of M13 carry the same
ordered 6-tuple of counters to X.

Proof: By the pigeonhole principle, since the number of 6-sets X equals
|M13| = 1235520 (Lemma IV.3). 2

A 6-set X may be described as one of three different types, determined by
its geometry as a subset of P3:

Type I: X contains all the points of some line.

Type II: X is disjoint from some line.

Type III: X is neither of type I or type II. (I.e., X has between one and
three points in common with every line of P3.)

Note that X can neither contain two lines (since the union of two lines con-
tains seven points) nor be of both type I and type II (since the intersection
of any two lines is nonempty).

It is informative to count the number of 6-sets of each type. First note that
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the total number of 6-sets is
(13

6

)
= 1716. For type-I sets, we choose one of

13 lines and then add 2 of the 9 points not on it, obtaining 13 · (9
2

)
= 468

different sets. For type II, we choose one of 13 lines to be excluded from
X and then choose 6 of the 9 points not on it, obtaining 13 · (9

6

)
= 1092.

However, any 6-set disjoint from more than one line will be counted twice in
this calculation. No 6-set can be disjoint from more than two lines, but the
complement of the union of two lines contains exactly six points, implying
that there are

(13
2

)
= 78 such 6-sets. Thus the number of 6-sets of type II is

1092−78 = 1014. Finally, there are 1716−1014−468 = 234 sets of type III.

We have described type-III sets almost as an afterthought. In fact, deter-
mining whether type-III sets are 6T is the most difficult case. We first prove
a lemma which neatly describes the geometry of type-III sets, before moving
on to a general investigation of sextuple transitivity of points.

Lemma IV.9: Let X = {x1, . . . , x6} be a 6-set of type-III. Up to reindexing,
each of the triples {x1, x2, x3}, {x1, x4, x5}, {x2, x4, x6}, and {x3, x5, x6} is
collinear.

Proof: First of all, any 6-set (of whatever type) must contain at least one
collinear triple, since there are

(6
2

)
= 15 ways of determining a line from two

points of X, and only 13 lines of P3. So pick three points x1, x2, x3 that
lie on a line L, and let c be the fourth point on L. Since each line of P3

intersects L, we have shown that X contains a point on every line, except
for the three other lines L1, L2, L3 incident to c. Since X cannot contain L
(being of type III), c itself cannot be an element of X. So X can be only
completed if (up to reindexing) x4 ∈ L1, x5 ∈ L2, x6 ∈ L3. However, we
must restrict our choice so that x4, x5, x6 are not collinear. (If they are, then
the fourth point on the line L′ containing them must lie on L. It cannot be
c since we would then have two distinct lines, L′ and L1, containing both c
and x4, but if it is x1, x2 or x3, then X contains L′ and is not of type III.)
Hence we may choose x4 and x5 freely (3 choices for each) but then have only
two choices for x6 (we may not pick the point on L3 collinear with x4 and
x5). Now, the line containing x4 and x5 must intersect L. The intersection
cannot be c, so must be some xi. Reindex so that it is x1. By analogous
arguments, and reindexing appropriately, we can conclude that the triples
{x2, x4, x6} and {x3, x5, x6} are collinear, as desired. 2

Note that the list of type-III sets obtained in this way has 13·(4
3

)·3·3·2 = 936
elements. However, any type-III set X will appear four times in the list —
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once for each of the lines containing three points of X — and so the number
of distinct type-III sets enumerated thusly is 936/4 = 234, which agrees with
our original counting.

We note in passing that Lemma IV.9 doubles as a uniqueness proof for P3,
since we have been able to construct all thirteen points and lines, unique up
to labelling, starting with only the combinatorial properties of the projective
plane. Moreover, we can count the automorphisms of P3, based on the fact
that choosing any type-III set determines the geometry of the remaining
seven points. There are 234 sets of type III (as shown above). Each such set
S has 4! = 24 automorphisms, corresponding to the possible permutations
of the four lines through three elements of S. Therefore P3 has 234 · 24 =
5616 automorphisms. This agrees with our definition of P3 as the space
F 3

3 \{(0, 0, 0)} modulo the relation x = −x. The general linear group GL3(3)
has (33 − 1)(33 − 3)(33 − 32) = 26 · 24 · 18 = 11232 elements [7, p. 162].
The group of automorphisms of P3 is the projective linear group PGL3(3),
which is the quotient of GL3(3) by the group N of maps x 7→ kx. Since
the only possible values for k are ±1, the group N is cyclic of order 2 and
|PGL3(3)| = |GL3(3)|/2 = 11232/2 = 5616, as desired.

Theorem IV.10: Any 6-set X = {x1, . . . , x6} is 6T if and only if it is of
type I.

Proof: We examine the three types of 6-set separately.

Case 1 : X is of type I.

Let L = {x1, x2, x3, x4} be the (unique) line contained in X. The other two
points x5 and x6 determine a unique line M , which in turn intersects L in a
unique point. Without loss of generality, assume that this point is x1. Let
n be the fourth point on M .

Now, let C = {c1, . . . , c6} be any 6-tuple of counters. Play a move σ as
follows: first move the hole to x1, then play a move which fixes the hole at
x1 and moves counter cj to point xj for j = 2, . . . , 6. (Such a move must
exist by quintuple transitivity of M12). Let p be the point to which σ moves
c1. If p 6= n, then the line through p and x1 does not pass through any of
x2, . . . , x6, so we can obtain a permutation taking C to X by first playing
σ, then moving the hole from x1 to p.

If p = n, then we must do a little more work. By first playing σ, then moving
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the hole along the path x1x2nx3x4n, we obtain the desired permutation
taking C to X.

Case II : X is of type II.

Let L be a line of P3 disjoint from X. Start by moving the hole to some
point in L. By then moving the hole to any other point of L, a new element
of M12 is obtained which carries the same 6-set of counters to X, since the
last move does not change any of the counters lying on X. Hence X is N6T
by Lemma IV.8.

Case III : X is of type III.

Recall Lemma IV.10, which describes the geometry of X. To complete our
labelling of P3, let c1, c2, c3, c4 denote the fourth points on the lines contain-
ing {x1, x2, x3}, {x1, x4, x5}, {x2, x4, x6}, and {x3, x5, x6} respectively. Now
consider the lines of P3 containing the pairs {x1, x6}, {x2, x5}, and {x3, x4}.
None of these lines can contain any other xi, or any of the ci. Since any
two of the lines intersect in a point, they can be written as {x1, x6, d2, d3},
{x2, x5, d1, d3}, and {x3, x4, d1, d2}. We have now accounted for all thirteen
points of P3: they are

{x1, . . . , x6, c1, . . . , c4, d1, . . . , d3}.

We have also described seven of the thirteen lines, to wit:

{x1, x2, x3, c1}, {x1, x6, d2, d3},
{x1, x4, x5, c2}, {x2, x5, d1, d3},
{x2, x4, x6, c3}, {x3, x4, d1, d2},
{x3, x5, x6, c4}.

The other six lines must therefore be

{x1, d1, c3, c4}, {x2, d2, c2, c4},
{x3, d3, c2, c3}, {x4, d3, c1, c4},
{x5, d2, c1, c3}, {x6, d1, c1, c2}.

Suppose that the initial position of the hole is c1. Then the permutations
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(c1 d3 x5)(d2 c3)(x2 d1)

and
(c1 d1 x2 d2)(x5 c3 d3)(c2 c4),

produced by paths c1x5x3 and c1d2x2d1 respectively, both take the coun-
ters originally located at (x1, d1, x3, x4, d3, x6) to the positions (x1, . . . , x6)
respectively. Hence X is N6T.

If, on the other hand, the hole is initially located at some xi or some di, we
can simply make an initial move which takes the hole to c1, then proceed as
above.

5 Adding A Sign To The Conway Game

The following argument, which is due to Elkies [6], shows that the signed
extension of the Conway game mentioned earlier produces the group 2M12.
In the process, we note certain facts about the geometry of the projective
plane P3. A corollary of Elkies’ result is that the original Conway game
group GC is a subgroup of M12; combined with the earlier construction of
M12 from particular elements of GC , this completes the verification that
GC = M12.

Let X be the vector space F 13
3 , with basis vectors {xp}, p ∈ P3. We shall

adopt the notational convention that a vector v ∈ X has coordinates vp, i.e.,
v =

∑
p vpxp.

Define the code C to be the vector subspace of X spanned by the vectors

hl =
∑

p∈l

xp

for all lines l of P3. We make use of the following definitions: the support
of a codeword c is Supp(c) = {p ∈ P3 : cp 6= 0}, and the weight of c is
wt(c) = |S(c)|.
The following theorem gives several useful tools for working with C.
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Theorem IV.11: For any c ∈ C, the following properties hold:

1.
∑

p∈P3

(c2
p) =


 ∑

p∈P3

cp




2

. (∗)

2. wt(c) ≡ 0 or 1 (mod 3).

3. wt(c) ≡ 0 (mod 3) iff ∑

p∈P3

cp = 0.

4. The set C0 = {c ∈ C : wt(c) ≡ 0 (mod 3)} is a vector space whose
codimension in C (i.e., dim(C)− dim(C0)) equals 1.

5. For any line l of P3, ∑

p∈P3

cp =
∑

p∈l

cp. (∗∗)

6. C0 is the dual space of C under the canonical scalar product

c · d =
∑

p∈P3

cpdp.

7. dim(C) = 7 and dim(C0) = 6.

8. The minimal weights of C and C0 are 4 and 6 respectively.

Proof:

1. Since the hl span C, it suffices to prove the identity

∑

p∈P3

(cpc
′
p) =


 ∑

p∈P3

cp





 ∑

p∈P3

c′p




for c = hl, c′ = hm. In this case, both sides of the equation collapse
to 1, whether l and m are the same or different.
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2.

wt(c) =
∑

p∈P3

(c2
p) =


 ∑

p∈P3

cp




2

is a square in F3, hence is congruent to either 0 or 1 (mod 3).

3. c ∈ C0 if and only if the right side of (*), and thus wt(c), are congruent
to 0 (mod 3). Otherwise, wt(c) = 1.

4. By (3), C0 is a subgroup of C (considered as an abelian group under
addition); its cosets are {c ∈ C :

∑
p cp ≡ j (mod 3)} for j = 0, 1, 2.

So [C : C0] = 3, and since C and C0 are vector spaces over F3, the
space C0 has codimension 1.

5. Since (**) is a linear identity, it suffices to verify it for the generators
{hl}. Let c = hm; then both sides of (**) are equal to 1 whether l and
m are the same or different.

6. (**) generalizes to the bilinear identity

c · c′ =
∑

p∈P3

cpc
′
p =


 ∑

p∈P3

cp





∑

p∈P

c′p


 .

If c ∈ C0, then the right-hand side of the above equation is zero for any
c′ ∈ C. Therefore C ⊂ C⊥

0 . To prove the reverse inclusion, let w ∈ C⊥
0 .

If Supp(w) intersects any line l in more than 2 points, then it is possible
to reduce wt(w) by adding or subtracting hl from w. Repeating this
process as many times as needed, we obtain w′ ∈ C⊥

0 congruent to w
modulo C (since hl ∈ C ⊂ C⊥

0 ) and such that Supp(w′) intersects no
line in more than two points.

We claim that Supp(w′) = ∅. By inspection, we can see that wt(w′) ≤
4: let Z = {p1, p2, p3, p4} be four points of P3, no three on any one line.
Let us list all other points on the lines joining any two points of Z.
This list will contain twelve points, including three duplicates, hence
nine different points not contained in Z. Thus we have accounted for
all thirteen points of P3, and there is no way to add a fifth point to Z
without intersecting some line three times. However, if 0 < wt(w′) < 5,
then there exists some line l disjoint from Supp(w′) and another line
m intersecting it in exactly one point. But then the difference of hl
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and hm is in C0 but is not orthogonal to w, which is a contradiction
since C ⊂ C⊥

0 . Hence Supp(w′) = ∅, w′ = 0, and w ∈ C, completing
the proof. (Elkies’ proof used the fact [1, p. 18] that if n is odd, the
projective plane of order n contains no hyperovals, i.e., sets of n + 2
points no three of which are collinear. The argument here, however,
is more elementary, and independent of that theorem.)

7. By (6),

dim(C0) + dim(C⊥
0 ) = 13 = dim(C)− 1 + dim(C),

and so dim(C0) = 6 and dim(C) = 7.

8. C contains codewords of weight 4, the generators cl. By the preceding
argument, if w ∈ C and Supp(w) meets each line of P3 in two points
or fewer, then w = 0. In particular, C has no words of weight 1
or 2. Moreover, if w ∈ C has weight 3, then the three points of
Supp(w) = 3 must all lie on some line l. But then the weight of w
can be reduced by adding or subtracting hl, which, as we have seen,
leads to a contradiction. Thus C has minimal weight 4. Since C0 ⊂ C
and the weight of any word of C0 is a multiple of 3, C0 has minimal
weight at least 6, which is realized by any difference hl−hm of distinct
generators. 2

For each p ∈ P3, define a subcode Gp = {c ∈ C : cp = −∑
q∈P3

cq}, and let
Gp be the restriction of Gp to P3 − {p}.
Proposition IV.12: Gp is isomorphic to the Golay code C12 for any p ∈ P3.

Proof: Gp is a proper subspace of C, since no hl lies in Gp. However, for
any v ∈ C, exactly one of v, v + hl, v − hl lies in Gp, so dim(Gp) = 6.
The restriction map φ : Gp → Gp can have only vectors of weight ≤ 1
in its kernel. Since 0 is the only such vector, φ must be a bijection, and
dim(Gp) = dim(Gp) = 6. 2

If c ∈ Gp, the weight of φ(c) is congruent (mod 3) to

∑

q 6=p

(c2
q) =


 ∑

q∈P3

c2
q


− c2

p =


 ∑

q∈P3

cq




2

− c2
p = 0.
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The generalized bilinear version of the above identity, for any c, d ∈ Gp, is

φ(c) · φ(d) =
∑

q 6=p

cqdq =
∑

q∈P3

(cqdq − cpdp) =


 ∑

q∈P3

cq





 ∑

q∈P3

dq


− cpdp

= (−cp)(−dp)− cpdp = 0.

Hence the code Gp is self-dual. We have proven that Gp is a ternary self-
dual code in which the weight of every codeword is a multiple of 3 and whose
minimal weight is ≥ 3; it follows that Gp is isomorphic to the Golay code
C12 [4, p. 434]. 2

Now, let l = {p, q, r, s} be a line of P , and define a linear transformation
ι̃pq : F 13

3 → F 13
3 taking w to w′, where

w′p = wq, w′q = −wp − wq, w′r = −ws, w′s = −wr,

and w′t = wt for all t 6∈ l. (ι̃pq represents a move in the signed Conway game,
moving the hole from p to q and interchanging and flipping the counters on
r and s.)

Proposition IV.13: ι̃pq(Gp) = Gq.

Proof: It suffices to prove the inclusion ι̃pq(Gp) ⊂ Gq, for then ι̃qp(Gq) ⊂ Gp

and ι̃pq(ι̃qp(Gq)) = Gq ⊂ ι̃pq(Gp).

Let c ∈ Gp, c
′ = ι̃pqc. First note that

cp = −
∑

q∈P

cq = −
∑

q∈l

cq

= −cp − cq − cr − cs

which implies that cp = cq + cr + cs. Now,

c− c′ =
∑

p∈l

(cp − c′p)xp
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= (cp − cq)xp + (cp − cq)xq + (cr + cs)xr + (cr + cs)xs

= (cp − cq)hl.

So c− c′ ∈ C, whence c′ ∈ C. Moreover,

∑

p∈P

c′p =
∑

p∈l

c′p = c′p + c′q + c′r + c′s

= cq − cp − cq − cs − cr = cp + cq = −c′q.

Therefore, c′ ∈ Gq. 2

Corollary IV.14: Any element of the “signed Conway game group” G+
C —

i.e., a permutation of P − {p} induced by some move ι̃zpι̃yz . . . ι̃pq — is an
automorphism of the Golay code Gp.

It follows that G+
C is a subgroup of the automorphism group of the Golay

code, which is the group 2M12 of Part III. G+
C in fact contains a central

involution −1, which flips every counter in its place, and taking the quotient
group of G+

C by {±1} is equivalent to ignoring flips. That is, the resulting
group is the original Conway game group GC . Therefore, since G+

C < 2M12,
it follows that GC < M12. We know from MAKE–M13 and the constructions
of IV.2 that the reverse inclusion holds. This completes the verification that
GC = M12.

6 Distance in 2M13

The metric described in IV.2 extends without modification on 2M13. To fa-
cilitate the work that follows, we converted MAKE–M13 into a new program
MAKE–2M13 (Appendix 2), which keeps track of flips. It turns out that the
addition of a sign imparts some new metric properties to the Conway game.
The proof of the following theorem, like that of Theorem IV.1, is empirical,
using the results of MAKE–2M13.

Theorem IV.15: The depth distributions of 2M12 and 2M13 are as follows:
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Depth Permutations in 2M12 Permutations in 2M13

0 1 1
1 0 12
2 0 108
3 54 918
4 540 7344
5 5184 57852
6 25821 356949
7 85230 1192770
8 72351 843291
9 898 11674
10 0 108
11 0 12
12 1 1

Total 190080 2471040

Corollary IV.16: 2M12 and 2M13 have diameter 12.

The unique element of M13 at depth twelve is −1, the central involution flip-
ping each counter without moving it. (There are, of course, many different
length-12 paths that produce −1.) By extension, two elements a, b ∈ 2M13

are antipodal , i.e., at maximal distance from each other, iff a = −b.

Since every permutation has a unique antipode, we can visualize 2M13 as
a “globe” in which pairs of poles represent antipodal permutations. The
distribution of depths lends this image further credence.

In particular, the depth distributions of 2M12 and 2M13 can be described
as “symmetric near the poles”: for k ≤ 2, there are equal numbers of per-
mutations at depths k and 12 − k. However, this symmetry breaks down
further from the poles — more elements of 2M13 lie at depth 12 − k than
at k for 3 ≤ k ≤ 5. One explanation for this phenomenon is as follows: if
x ∈ 2M13 lies at depth d, then −x must lie at depth at least 12−d, otherwise
−1 = x(−x)−1 could be produced by a path of length < d + (12− d) = 12,
which we know empirically to be false. However, the depth of −x will be ex-
actly 12−d only when some path from d to −d has the identity as one of its
intermediate positions, which need not be the case. Moreover, if D(x) = k
for x ∈ 2M12, then the two lifts of x in 2M13, x̃ and −x̃, have depth ≥ k,
with equality holding for at least one of the two. Thus, e.g., if D(x) > 6,
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then D(x̃) + D(−x̃) > 12.

On the other hand, the symmetry for k ≤ 2 can in part be explained theo-
retically; we can show at least that the negative of a permutation at depth 1
or 2 must be at depth 11 or 10, respectively. We must rely on MAKE–2M13
for the converse, however.

Lemma IV.17: d(x, y) = d(−x,−y).

Proof: d(−x,−y) = D((−x)−1(−y)) = D(x−1y) = d(x, y).

Proposition IV.18: If D(x) ≤ 2, then D(−x) = 12−D(x).

Proof: Define T = {x ∈ 2M13 : D(x) = k} and let −T = {−x : x ∈ T},
which is the same as {x : d(x,−1) = k} by Lemma IV.17. If k ≤ 2, then all
permutations in T are isomorphic, i.e., any pair can be put in correspondence
under an appropriate isomorphism of P3. Thus their negatives in −T are
isomorphic as well. In particular, all elements of −T lie at the same depth.
But for −1 to lie at depth 12, at least one element of −T must lie at depth
12− k. 2

Notice that this argument fails for k > 2, since there exist nonisomorphic
elements whose depths are equal but greater than 2. (E.g., there are elements
of both M12 and M13\M12 at depth 3.) Furthermore, G+

C has many elements
at depth 9 other than the negatives of permutations of depth 3 (which
are at distance 3 from −1) and the lifts of antipodal elements in M12. A
classification of all such elements, as well as deeper investigation of the cycle-
shapes of permutations appearing at various depths in both M13 and 2M13,
awaits further research.
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