Instructions: Do all problems and typeset them in LATEX. E-mail your final PDF file to Jeremy at jlmartin@ku.edu by Tuesday, September 6, 11:59pm.

You are encouraged to use the header file available from the course website.

Citations to the **lecture notes** refer to the version of August 30. Check that you have the most current version.

Exercise 1.1. Let n be a nonnegative integer.

- (a) Prove that every interval in a Boolean algebra \mathscr{B}_n is itself a Boolean algebra \mathscr{B}_k for some $k \leq n$.
- (b) Prove that every interval in the partition lattice Π_n is itself a partition lattice Π_k for some $k \leq n$.

Exercise 1.2. A directed acyclic graph or DAG, is a pair G = (V, E), where V is a finite set of vertices; E is a finite set of edges, each of which is an ordered pair of distinct vertices; and E contains no directed cycles, i.e., no subsets of the form $\{(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n), (v_n, v_1)\}$ for any $v_1, \ldots, v_n \in V$.

- (a) Let P be a poset with order relation <. Let $E = \{(v, w) \mid v, w \in P, v < w\}$. Prove that the pair (P, E) is a DAG.
- (b) Let G = (V, E) be a DAG. Define a relation < on V by setting v < w iff there is some directed path from v to w in G, i.e., iff E has a subset of the form $\{(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n)\}$ with $v = v_1$ and $w = v_n$. Prove that this relation makes V into a poset.

(This problem is purely a technical exercise, but it does show that posets and DAGs are essentially the same thing.)

Exercise 1.3. Let n be a positive integer. Let D_n be the set of all positive-integer divisors of n (including n itself), partially ordered by divisibility.

- (a) Prove that D_n is a ranked poset, and describe the rank function.
- (b) For which values of n is D_n (i) a chain; (ii) a Boolean algebra? For which values of n, m is it the case that $D_n \cong D_m$?
- (c) Prove that D_n is a *distributive lattice*, i.e., a lattice such that $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ for all $x, y, z \in D_n$. Describe its meet and join operations and its join-irreducible elements.
- (d) Prove that D_n is self-dual, i.e., there is a bijection $f: D_n \to D_n$ such that $f(x) \leq f(y)$ if and only if $x \geq y$.

Exercise 1.4. Let Δ be a simplicial complex on vertex set V, and let $v_0 \notin V$. The **cone over** Δ is the simplicial complex $C\Delta$ generated by all faces $\sigma \cup \{v_0\}$ for $\sigma \in \Delta$.

- (a) Determine the f- and h-vectors of $C\Delta$ in terms of those of Δ .
- (b) Show that Δ is shellable if and only if $C\Delta$ is shellable.

Exercise 1.5. Prove that conditions (1) and (2) in the definition of shellability (Defn. 1.19) are equivalent.

Exercise 1.6. Prove Proposition 1.20. (Hint: For the "Moreover" part, prove the contrapositive by showing that for all i > 1, there is some vertex $v \in R_i$ such that $R_i \setminus \{v\} = R_j$ for some j < i.)