Math 824 Problem Set #5 Due Wednesday, December 8

Problem #1 (#1a) Read the construction of the induced representation (§6.9 of the lecture notes). Start with an easy one: Determine the dimension of $\operatorname{Ind}_{H}^{G}(\rho)$ as a \mathbb{C} -vector space.

(#1b) Let n be a positive integer, and let D_n be the dihedral group $\langle x, y | x^n = y^2 = 1, yxy = x^{-1} \rangle$. Let C_n be the cyclic subgroup generated by x, and let ρ be the irreducible representation of C_n mapping x to $\zeta = e^{2\pi i/n} \in \mathbb{C}$. Show that $\operatorname{Ind}_{C_n}^{D_n}(\rho)$ is isomorphic to the "standard" two-dimensional representation of D_n as the group of symmetries of \mathbb{R}^2 fixing a regular n-gon).

Problem #2 (#2a) Work out the table of irreducible characters of \mathfrak{S}_5 , by whatever means necessary. (You might want to enlist the services of a computer in doing the linear algebra.)

(#2b) Restrict all these characters to the alternating subgroup \mathfrak{A}_5 , and work out as much as you can about its irreducible characters. Try assuming from the start that the conjugacy classes of \mathfrak{A}_5 are conjugacy classes in \mathfrak{S}_5 . In fact this is false, as should become apparent in the course of the calculation.

(#2c) Let H be the subgroup of \mathfrak{A}_5 generated by a 5-cycle σ , and let χ be the 1-dimensional character defined by $\chi(\sigma) = \zeta$, where $\zeta = e^{2\pi i/5} \in \mathbb{C}$. With what you've already done, show that $\operatorname{Ind}_H^G \chi$ is an irreducible character of \mathfrak{A}_5 .

Problem #3 Recall that for $\lambda, \mu \vdash n$, the Kostka number $K_{\lambda\mu}$ is defined as the number of column-strict tableaux of shape λ and content μ (that is, having μ_1 1's, μ_2 2's, etc.) Prove that $K_{\lambda\mu} = 0$ unless $\lambda \supseteq \mu$. (Together with the fact that $K_{\lambda} = 1$ for all λ , this implies that the Schur symmetric functions are a graded \mathbb{Z} -basis for Λ .)

Problem #4 Prove the second identity of Proposition 7.12 (in §7.3 of the lecture notes), namely

$$\prod_{i,j\geq 1} (1+x_i y_j) = \sum_{\lambda} e_{\lambda}(\mathbf{x}) m_{\lambda}(\mathbf{y}) = \sum_{\lambda} \varepsilon_{\lambda} \frac{p_{\lambda}(\mathbf{x}) p_{\lambda}(\mathbf{y})}{z_{\lambda}}.$$

Hint: Mimic the proof of the *first* identity of Proposition 7.12.

Problem #5 (#5a) For $w \in \mathfrak{S}_n$, let (P(w), Q(w)) be the pair of tableaux produced by the RSK algorithm from w. Denote by w^* the reversal of w in one-line notation (for instance, if w = 57214836, as in Example 7.16 from the lecture notes, then $w^* = 63841275$). Prove that $P(w^*) = P(w)^T$ (where T means transpose). Hint: Figure out how to describe the rows and columns of P(w) in terms of subsequences of w.

(#5b) Open problem: For which permutations does $Q(w^*) = Q(w)$? Maple computation indicates that the number of such permutations is

$$\begin{cases} \frac{2^{(n-1)/2}(n-1)!}{((n-1)/2)^2} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even,} \end{cases}$$

but I don't know a combinatorial (or even an algebraic) reason.

(#5c) Open problem: For which permutations does $Q(w^*) = Q(w)^T$? I have no idea what the answer is. The sequence $(q_1, q_2, ...) = (1, 2, 2, 12, 24, 136, 344, 2872, 7108, ...)$, where $q_n = \#\{w \in \mathfrak{S}_n \mid Q(w^*) = Q(w)^T\}$, does not seem to appear in the Online Encyclopedia of Integer Sequences.