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Omega

Last time, we saw (broadly) how to use triangularity arguments to show that {ex}, {sr}, and {pxr} are bases
for the ring A of symmetric functions (the first two Z-bases, the second two Q-bases). Triangularity does
not work for the basis {hy}, because the complete homogeneous symmetric functions have so many terms.
For example, in degree 3,

h3 1 1 1 ms
h21 =11 2 3 mo1
hi11 1 3 6 mii1
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and it is not obvious that the base-change matrix has
to prove that {hy} is a Z-basis.

eterminant 1 (although it does). We need a new tool

Define a ring endomorphism w : A — A by w(e;) = h; for all 4, so that w(ey) = hy. This is well-defined since
the elementary symmetric functions are algebraically independent (recall that A = Rleq, e, ...]).

Proposition 1. w(w(f)) = f for all f € A. In particular, the map w is a ring automorphism.

Proof. Recall the generating functions

(1) E(t) = > et" = [ +tzn),

k>0 n>1
(2) H(t) = > hth = [0 —tan)™".
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Using the sum formulas in [0 and @) gives
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On the other hand, the product formulas in (@) and @) say that E(t)H(—t) = 1. Equating coefficients of ¢"
gives
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Applying w, we find that
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and comparing this last expression with ) gives w(hy) = ey. O

Corollary 2. {hy} is a graded Z-basis for A. Moreover, Ar = Rlhq,ha,...].



By the way, the equation (@) can be used recursively to express the ej’s as integer polynomials in the hy’s,
and vice versa.

A Bunch of Identities

The Cauchy kernel is the formal power series
Q=[] -y
i,j>1
As we'll see, the Cauchy kernel can be expanded in many different ways in terms of symmetric functions in
the variable sets {z;} and {y;}.

For a partition A F n, let m; be the number of i’s in A, and define

Zy = 1"'mq!12™2mgy! - -, ey = (—1)matmate

For example, if A\ = (3,3,2,1,1,1) then zy = 133!2'1!1322! == 216. The notation comes from the fact
that this is the size of the centralizer of a permutation o € &,, with cycle-shape A\ (that is, the group of
permutations that commute with o). Meanwhile, € is just the sign of a permutation with cycle-shape A.

Proposition 3. We have the identities

(5) H (1—azy;)~ ' = ZhA(x)m)\(y) = Z%ﬁu(y),
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(6) [T @ +2iy) = D ea@maly) = ngz%zjx(y{
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where the sums run over all partitions .

Proof. For the first identity in (&),
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(since the coefficient on the monomial yflylf <+« in (@) is hg, bk, -+ ).
For the second identity in (@), we need some more trickery. Recall that
n 2 3
og(l+q)=> (1) =q— 5+
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Therefore,
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The proofs of the identities in () are analogous, and left to the reader.

Corollary 4. We have
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(10) w(pa) = expa

Proof. For (), we start with the identity of (&):
PAT)PAY
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Set y; = t, and yr, = 0 for all £ > 1. This kills all terms on the left side for which A has more than one part,

so we get
hn(z)t" = _
> o — 2
A=(n) A
and extracting the coefficient of t™ gives ).

Starting with (@) and doing the same thing yields (@).

As Brian pointed out, you can’t obtain ([[) just by applying w to @) and comparing with (@), as I had
mistakenly claimed in class. Here is a better reason. In what follows, w is going to act on the x;’s while



leaving the y;’s alone. Using () and (@), we obtain

Z-m(y) = Y h@m) = <ZGA(I)mA(y)> = w (ZEALW*(”)
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and equating coefficients of py(y)/zx, as shown, yields the desired result. O

The Hall Inner Product

Definition 1. The Hall inner product (-,-) on Ag is defined by declaring {h»} and {m,} to be dual
bases:
(hx, M) = 6xp

e Two bases {ux}, {va} are dual under the Hall inner product if and only if

H 1; = ZU)\’U)\.
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e In particular, {p_,\ | A+ n} is an orthonormal basis for Ag n, so () is an inner product — that is, a
AVZ2N

nondegenerate bilinear form.

e The involution w is an isometry, i.e., {(a,b) = (w(a),w(b)).

It sure would be nice to have an orthonormal basis for Ayz. In fact, the Schur functions are such a thing.
The proof of this statement requires a marvelous combinatorial tool called the RSK correspondence (for
Robinson, Schensted and Knuth).



