
Friday 4/11

Until further notice, G is still a finite group and all representations are finite-dimensional over C.

New Characters from Old

In order to investigate characters, we need to know how standard vector space (or, in fact, G-module)
functors such as ⊕ and ⊗ affect the corresponding characters.

Throughout, let (ρ, V ), (ρ′, V ′) be representations of G, with V ∩ V ′ = ∅.

1. Direct sum.

To construct a basis for V ⊕ V ′, we can take the union of a basis for V and a bais for V ′. Equivalently, we
can write the vectors in V ⊕ V ′ as column block vectors:

V ⊕ V ′ =

{[

v

v′

]

| v ∈ V, v′ ∈ V ′

}

.

Accordingly, define (ρ⊕ ρ′, V ⊕ V ′) by

(ρ⊕ ρ′)(h) =

[

ρ(h) 0
0 ρ′(h)

]

.

From this it is clear that

(1) χρ⊕ρ′ (h) = χρ(h) + χρ′(h).

2. Duality.

Recall that the dual space V ∗ of V consists of all F-linear transformations φ : V → F. Given a representation
(ρ, V ), there is a natural action of G on V ∗ defined by

(hφ)(v) = φ(h−1v)

for h ∈ G, φ ∈ V ∗, v ∈ V . (You need to define it this way in order for hφ to be a homomorphism — try it.)
This is called the dual representation (or contragredient representation ρ∗.

Proposition: For every h ∈ G,

(2) χρ∗(h) = χρ(h).

Proof. Choose a basis {v1, . . . , vn} of V consisting of eigenvectors of h (since we are working over C); say
hvi = λivi.

In this basis, ρ(h) = diag(λi) (i.e., the diagonal matrix whose entries are the λi), and in the dual basis,
ρ∗(h) = diag(λ−1

i ).

On the other hand, some power of ρ(h) is the identity matrix, so each λi must be a root of unity, so its
inverse is just its complex conjugate. �



3. Tensor product.

Recall that if {v1, . . . , vn}, {v′1, . . . , v
′
m} are bases for V, V ′ respectively, then V ⊗ V ′ can be defined as the

vector space with basis
{vi ⊗ v′j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

In particular, dimV ⊗ V ′ = (dimV )(dim V ′).

Accordingly, define a representation (ρ⊗ ρ′, V ⊗ V ′) by

(ρ⊗ ρ′)(h)(v ⊗ v′) = ρ(h)v ⊗ v′ + v ⊗ ρ′(h)v′

or more concisely
h · (v ⊗ v′) = (hv) ⊗ v′ + v ⊗ (hv′),

extended bilinearly to all of V ⊗ V ′.

In terms of matrices, (ρ⊗ ρ′)(h) is represented by the block matrix










a11B a11B · · · a1nB

a21B a22B · · · a2nB
...

...
...

an1B an2B · · · annB











where ρ(h) = [aij ]i,j=1...n and ρ′(h) = B. In particular,

(3) χρ⊗ρ′(h) = χρ(h)χρ′(h).

4. Hom.

Recall that HomG(V, V ′) = HomG(ρ, ρ′) is the vector space of all G-equivariant maps ρ→ ρ′.

Meanwhile, HomC(V,W ) can be made into a G-module by

(4) (h · φ)(v) = h(φ(h−1v)) = ρ′(h)
(

φ(ρ(h−1)(v))
)

.

for h ∈ G, φ ∈ HomC(V,W ), v ∈ V . (That is, h sends φ to the map h · φ which acts on V as above.) You
can then verify that this is a genuine group action.

In general, when G acts on a vector space V , the subspace of G-invariants is defined as

V G = {v ∈ V | hv = h ∀h ∈ G}.

In our current setup, a map φ is G-equivariant if and only if h ·φ = φ for all h ∈ G (proof left to the reader).
That is,

(5) HomG(V,W ) = HomC(V,W )G.

Moreover, HomC(V,W ) ∼= V ∗ ⊗W as vector spaces, so

(6) χHom(ρ,ρ′)(h) = χρ(h) χρ′(h).



The Inner Product

Recall that a class function is a function χ : G → C that is constant on conjugacy classes of G. Define an
inner product on the vector space C`(G) of class functions by

〈χ, ψ〉G =
1

|G|

∑

h∈G

χ(h)ψ(h).

Proposition 1. With this setup,

dimC V
G =

1

|G|

∑

h∈G

χρ(h) =
〈

χtriv, χρ

〉

G
.

Proof. Define a linear map π : V → V by

π =
1

|G|

∑

h∈G

ρ(h).

In fact, π(v) ∈ V G for all v ∈ V , and if v ∈ V G then π(v) = v. That is, π is a projection from V → V G, and
can be represented by the block matrix

[

I 0
∗ 0

]

where the first and second column blocks (resp., row blocks) correspond to V G and (V G)⊥ respectively. is
now evident that dimC V

G = trπ, giving the first equality. The second equality follows because V G is just
the direct sum of all copies of the trivial representation occurring as G-invariant subspaces of V . �

Example 1. Suppose that ρ is a permutation representation. Then V G is the space of functions that are
constant on the orbits. Therefore, the formula becomes

number of orbits =
1

|G|

∑

h∈G

number of fixed points of h

which is Burnside’s Lemma.

Proposition 2.
〈

χρ, χρ′

〉

G
= dimC HomG(ρ, ρ′).

Proof.

〈

χρ, χρ′

〉

G
=

1

|G|

∑

h∈G

χρ(h)χρ′(h)

=
1

|G|

∑

h∈G

χHom(ρ,ρ′)(h) (by (6))

= dimC Hom(ρ, ρ′)G (by Proposition 1)

= dimC HomG(ρ, ρ′) (by (5)). �


