Monday 3/31

Network Flows

Definition: A network is a directed graph N = (V, E) with the following additional data:

e A distinguished source s € V and sink t € V.
e A capacity function ¢: F — N.

A flow on N is a function f: E — N that satisfies the capacity constraints

(1) 0< f(e) <cle) Vee E
and the conservation constraints

(2) @) =frw) eV \{st}
where
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The value of a flow f is the net flow into the sink:

[fl=F7@) = F (&)= fT(s) = f(s).

Let ST CV with SUT =V, SNT =0,se S, and t € T. The corresponding cut is
S,T] = {ste E|seS,teS
and the capacity of the cut is

o(S,T) =Y cle).
ecE

We proved the main result last time:

Theorem 1 (Max-Flow/Min-Cut Theorem). Let f be a flow of maximum value and let [S,T] be a cut of
minimum capacity. Then |f| = ¢(S,T).

Acyclic and Partitionable Flows

Definition 1. A flow f is acyclic if, for every directed cycle C C D, i.e., every set of edges

C = {ziz3,2273,...,Tpn_12r, Tn®1},

there is some e € C for which f(e) = 0.

A flow f is partitionable if there is a collection of s, t-paths Py, ..., Py from such that for every e € E,
fle)=+{i|ee P}
(Here “s,t-path” means “path from s to ¢”.)

Proposition 2. e For every flow, there exists an acyclic flow with the same value.
e Every acyclic flow is partitionable.

Proof. Suppose that some directed cycle C has positive flow on every edge. Let k = min{f(e) | e € C}.
Define f : F — N by

7o) — fle)—kifeeC,
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Then it is easy to check that f is a flow, and that |f| = |f|. If we repeat this process, it must eventually stop
(because the positive quantity ) .5 f(e) decreases with each iteration), which means that the resulting flow
is acyclic. This proves (1).

Given an acyclic flow f, find an s, t-path P; along which all flow is positive. Decrement the flow on each edge
of P;; doing this will also decrement |f|. Now repeat this for an s, ¢-path P, etc. Eventually, we partition
f into a collection of s, t-paths of cardinality |f]. O

Applications of the Max-Flow/Min-Cut Theorem

Let G be a graph or directed graph, and let s,¢t € V(G). A family of s, ¢t-paths {Py,..., P,} in G is vertez-
disjoint if V(P;) NV (P;) = {s,t} for all i,7, and is edge-disjoint if E(P;) N E(P;) = 0 for all i,j. Every
vertex-disjoint family is edge-disjoint, but the converse is not true.

An s, t-verter cut is a set X C V(G) such that G — X contains no s, t-path. Likewise, an s,t-edge cut is a
set A C E such that G — A contains no s, t-path.

Theorem 3 (Menger’s Theorem). Let G be a graph or directed graph and let s,t € V(G). Then the mazimum
cardinality of a vertex-disjoint (resp., edge-disjoint) family of s,t-paths equals the minimum cardinality of
an s, t-vertex cut (resp., edge cut). (In the former case, we assume s,t are not adjacent.)

Proof. First of all, an undirected graph can be considered as a digraph by replacing each edge zy with a
pair of antiparallel edges Ty, yZ. So we may as well consider only the directed setting.

If we regard G as a network with source s and sink ¢, in which every edge has capacity 1, then the edge-version
of Menger’s Theorem is immediate from the Max-Flow/Min-Cut Theorem and Proposition

For the vertex version, we need to do a little surgery on G before applying Max-Flow/Min-Cut. The trick
is to separate each vertex z € V(GQ) \ {s,t} into an “inbox” #~ and an “out-terminal” z with a bottleneck
between them, so that only one path can pass through each vertex.

@ —> = m--m------ >

Specifically, define a digraph N by
V(N)={s,t}U{a", 2" |2 € V(G)\ {s,t},
— —
E(N) = {sx~ | 57 € E(G)}U{z"t | xt € E(G)}
—_—
U{aty™ |75 € E(G)}
—
U{z 2t |z € V(Q)},
and regard it as a network with source s and sink ¢ and capacity function
 —
e(e) = 1 ife=az"z" for some z € V(G),
oo otherwise.

Then an s, t-cut in N contains only finite-capacity edges, hence corresponds to an s, t-vertex cut in G. Now
applying Max-Flow/Min-Cut gives the desired result. O



Back to Algebraic Combinatorics

Here is two related min-max results on posets with the same flavor as the Max-Flow/Min-Cut Theorem.

A chain cover of a poset P is a collection of chains whose union is P. The minimum size of a chain cover is

called the width of P.
Theorem 4 (Dilworth’s Theorem). Let P be a finite poset. Then

width(P) = max {s | P has an antichain of size s}.

Dilworth’s Theorem can be proven using Max-Flow/Min-Cut, but it involves a bit more work, so here is a
poset-theoretic proof instead.

Proof. The “>” direction is clear, because if A is an antichain, then no chain can meet A more than once,
so P cannot be covered by fewer than |A| chains.

For the more difficult “<” direction, we induct on n = |P|. The result is trivial if n = 1 or n = 2.

Let Y be the set of all minimal elements of P, and let Z be the set of all maximal elements. Note that Y
and Z are both antichains. First, suppose that no set other than Y and Z is an antichain of maximum size.
Dualizing if necessary, we may assume Y is maximum. Let y € Y and z € Z with y < z. Then the maximum
size of an antichain in P’ = P — {y, z} is |Y'| — 1, so by induction it can be covered with |Y'| — 1 chains, and
tossing in the chain {y, z} gives a chain cover of P of size |Y]|.

Now, suppose that A is an antichain of maximum size that contains neither Y nor Z as a subset. Define
Pt ={zx € P|z>a for some a € A},
P~ ={ze€ P|xz<aforsomeac A}.

Then
e Pt P~ #£ () (otherwise A equals Z or Y).
e PTUP~ = P (otherwise A is contained in some larger antichain).
e PPN P~ = A (otherwise A isn’t an antichain).

So P* and P~ are posets smaller than P, each of which has A as a maximum antichain. By induction, each
has a chain cover of size |A]. So for each a € A, there is a chain C;f C P* and a chain C;; C P~ with
acCrnC;, and

{CInC; |ac A}
is a chain cover of P of size |A|. O



