
Monday 3/31

Network Flows

Definition: A network is a directed graph N = (V, E) with the following additional data:

• A distinguished source s ∈ V and sink t ∈ V .
• A capacity function c : E → N.

A flow on N is a function f : E → N that satisfies the capacity constraints

(1) 0 ≤ f(e) ≤ c(e) ∀e ∈ E

and the conservation constraints

(2) f−(v) = f+(v) ∀v ∈ V \ {s, t}

where
f−(v) =

∑

e=−→uv

f(e), f+(v) =
∑

e=−→vw

f(e).

The value of a flow f is the net flow into the sink:

|f | = f−(t) − f+(t) = f+(s) − f−(s).

Let S, T ⊂ V with S ∪ T = V , S ∩ T = ∅, s ∈ S, and t ∈ T . The corresponding cut is

[S, T] = {
−→
st ∈ E | s ∈ S, t ∈ S̄}

and the capacity of the cut is

c(S, T) =
∑

e∈E

c(e).

We proved the main result last time:

Theorem 1 (Max-Flow/Min-Cut Theorem). Let f be a flow of maximum value and let [S, T] be a cut of
minimum capacity. Then |f | = c(S, T).

Acyclic and Partitionable Flows

Definition 1. A flow f is acyclic if, for every directed cycle C ⊂ D, i.e., every set of edges

C = {−−→x1x2,
−−→x2x3, . . . ,

−−−−−→xn−1xn,−−−→xnx1},

there is some e ∈ C for which f(e) = 0.

A flow f is partitionable if there is a collection of s, t-paths P1, . . . , P|f | from such that for every e ∈ E,

f(e) = #{i | e ∈ Pi}.

(Here “s, t-path” means “path from s to t”.)

Proposition 2. • For every flow, there exists an acyclic flow with the same value.
• Every acyclic flow is partitionable.

Proof. Suppose that some directed cycle C has positive flow on every edge. Let k = min{f(e) | e ∈ C}.
Define f̃ : E → N by

f̃(e) =

{

f(e) − k if e ∈ C,

f(e) if e 6∈ C.

Then it is easy to check that f̃ is a flow, and that |f̃ | = |f |. If we repeat this process, it must eventually stop
(because the positive quantity

∑

e∈E f(e) decreases with each iteration), which means that the resulting flow
is acyclic. This proves (1).

Given an acyclic flow f , find an s, t-path P1 along which all flow is positive. Decrement the flow on each edge
of P1; doing this will also decrement |f |. Now repeat this for an s, t-path P2, etc. Eventually, we partition
f into a collection of s, t-paths of cardinality |f |. �

Applications of the Max-Flow/Min-Cut Theorem

Let G be a graph or directed graph, and let s, t ∈ V (G). A family of s, t-paths {P1, . . . , Pn} in G is vertex-
disjoint if V (Pi) ∩ V (Pj) = {s, t} for all i, j, and is edge-disjoint if E(Pi) ∩ E(Pj) = ∅ for all i, j. Every
vertex-disjoint family is edge-disjoint, but the converse is not true.

An s, t-vertex cut is a set X ⊆ V (G) such that G − X contains no s, t-path. Likewise, an s, t-edge cut is a
set A ⊆ E such that G − A contains no s, t-path.

Theorem 3 (Menger’s Theorem). Let G be a graph or directed graph and let s, t ∈ V (G). Then the maximum
cardinality of a vertex-disjoint (resp., edge-disjoint) family of s, t-paths equals the minimum cardinality of
an s, t-vertex cut (resp., edge cut). (In the former case, we assume s, t are not adjacent.)

Proof. First of all, an undirected graph can be considered as a digraph by replacing each edge xy with a
pair of antiparallel edges −→xy,−→yx. So we may as well consider only the directed setting.

If we regard G as a network with source s and sink t, in which every edge has capacity 1, then the edge-version
of Menger’s Theorem is immediate from the Max-Flow/Min-Cut Theorem and Proposition 2.

For the vertex version, we need to do a little surgery on G before applying Max-Flow/Min-Cut. The trick
is to separate each vertex x ∈ V (G) \ {s, t} into an “inbox” x− and an “out-terminal” x+ with a bottleneck
between them, so that only one path can pass through each vertex.

x+x−x

Specifically, define a digraph N by

V (N) = {s, t} ∪ {x−, x+ | x ∈ V (G) \ {s, t},

E(N) = {
−−→
sx− | −→sx ∈ E(G)} ∪ {

−−→
x+t |

−→
xt ∈ E(G)}

∪ {
−−−→
x+y− | −→xy ∈ E(G)}

∪ {
−−−→
x−x+ | x ∈ V (G)},

and regard it as a network with source s and sink t and capacity function

c(e) =

{

1 if e =
−−−→
x−x+ for some x ∈ V (G),

∞ otherwise.

Then an s, t-cut in N contains only finite-capacity edges, hence corresponds to an s, t-vertex cut in G. Now
applying Max-Flow/Min-Cut gives the desired result. �

Back to Algebraic Combinatorics

Here is two related min-max results on posets with the same flavor as the Max-Flow/Min-Cut Theorem.

A chain cover of a poset P is a collection of chains whose union is P . The minimum size of a chain cover is
called the width of P .

Theorem 4 (Dilworth’s Theorem). Let P be a finite poset. Then

width(P) = max
{

s | P has an antichain of size s
}

.

Dilworth’s Theorem can be proven using Max-Flow/Min-Cut, but it involves a bit more work, so here is a
poset-theoretic proof instead.

Proof. The “≥” direction is clear, because if A is an antichain, then no chain can meet A more than once,
so P cannot be covered by fewer than |A| chains.

For the more difficult “≤” direction, we induct on n = |P |. The result is trivial if n = 1 or n = 2.

Let Y be the set of all minimal elements of P , and let Z be the set of all maximal elements. Note that Y

and Z are both antichains. First, suppose that no set other than Y and Z is an antichain of maximum size.
Dualizing if necessary, we may assume Y is maximum. Let y ∈ Y and z ∈ Z with y ≤ z. Then the maximum
size of an antichain in P ′ = P − {y, z} is |Y | − 1, so by induction it can be covered with |Y | − 1 chains, and
tossing in the chain {y, z} gives a chain cover of P of size |Y |.

Now, suppose that A is an antichain of maximum size that contains neither Y nor Z as a subset. Define

P+ = {x ∈ P | x ≥ a for some a ∈ A},

P− = {x ∈ P | x ≤ a for some a ∈ A}.

Then

• P+, P− 6= ∅ (otherwise A equals Z or Y).
• P+ ∪ P− = P (otherwise A is contained in some larger antichain).
• P+ ∩ P− = A (otherwise A isn’t an antichain).

So P+ and P− are posets smaller than P , each of which has A as a maximum antichain. By induction, each
has a chain cover of size |A|. So for each a ∈ A, there is a chain C+

a ⊂ P+ and a chain C−
a ⊂ P− with

a ∈ C+
a ∩ C−

a , and
{

C+
a ∩ C−

a | a ∈ A}

is a chain cover of P of size |A|. �

