Wednesday 2/27

Mo6bius Inversion

Let P be a poset. Recall that we have defined the Mdbius function of P, p: P x P — Z, by

(1) pp(x,z) =1 for all x € P.
(2) If g Y, then ,U/p(fE,y) =0.
(3) Uz <y, then pp(z,y) = =3 ¢y, 1P (T; 2).

We saw last time that if P is a product of n chains (a distributive lattice), then

. (=1)* if x is the join of a atoms,
pp(0,z) = :
0 otherwise.

In particular, g, (0,1) = (—1)".

Also, if L = L,(q) is the (modular) subspace lattice and f(n,q) = ur(0,1), then we saw that f(n,q) =
(—1)”q(g) for n < 4.

Why is the Mé&bius function useful?

It is the inverse of ¢ in the incidence algebra (check this!)

It implies a more general version of inclusion-exclusion called Mdbius inversion.

It behaves nicely under poset operations such as product.

It has geometric and topological applications. Even just the single number g p(f), i) tells you a lot
about a bounded poset P; it is analogous to the Euler characteristic of a topological space.

Theorem 1 (Mdébius inversion formula). Let P be a poset in which every principal order ideal is finite,
and let f,g: P — C. Then

(1a) g@) =Y fly) VzeP < fl@)=) uyx)gly) VeeP
(1b) g@) =Y fly) VzeP <= fl@)=) pxygly) VzeP

Proof. “A trivial observation in linear algebra” —Stanley.

We regard the incidence algebra as acting C-linearly on the vector space V of functions f : P — Z by

for a € I(P). In terms of these actions, formulas ([[al) and ([[T) are respectively just the “trivial” observations
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We just have to prove that these actions are indeed actions, i.e.,

laxf]-f=a-[3-f] and f-laxp]l=[f-o] 0.

Indeed,
(f - faxBD)(y) =D _(a*p)(z,y)f(2)
=Y > a@2)8(y)f ()
<y z€[z,y]
- X (Lot | s
—Z (zy) = ((f @) BW).
and the other verification is analogous. ]

In the case of 4, the proposition says that

=Y f(B) YAC[ <«  fa)= > (-1)P\gB) VAC[n]

BCA BCA

which is just the inclusion-exclusion formula. So Md&bius inversion can be thought of as a generalized form
of inclusion-exclusion that applies to every poset.

Example 1. Here’s an oldie-but-goodie: counting derangements, or permutations ¢ € &,, with no fixed
points.

For S C [n], let
f(S)={0€6, |o(i)=iiffie S}
g(S)={0 €&, |a(i)=iifiec S}.
It’s easy to count g(S) directly. If s = |S|, then a permutation fixing the elements of S is equivalent to a

permutation on [n] \ S, so g(S) = (n — s)L.

It’s hard to count f(S) directly. However,
S) = f(R)
RDS

Rewritten in the incidence algebra I(4,), this is just g = ¢ - f. Thus f = p - g, or in terms of the Mobius
inversion formula (),

F8) = S uls Rya(R) = 3 (~1)F-1SIn  |R)) Z() o)l

RDS ROS =

The number of derangements is then f()), which is given by the well-known formula



Example 2. You can also use Mobius inversion to compute the Mobius function itself. In this example,
we’ll do this for the lattice L, (q). As a homework problem, you can use a similar method to compute the
M obius function of the partition lattice.

Let V =Ty, let L = L, (q), and let X be a F,-vector space of cardinality x (yes, cardinality, not dimension!)
Define

g(W) = number of F,-linear maps ¢ : V — X such that ker¢ D W = gn-dimW,
[Choose a basis B for W and extend it to a basis B’ for V. Then ¢ must send every element of B to zero,
but can send each of the n — dim W elements of M’ \ B to any of the = elements of X.] Let

f(W) = number of Fy-linear maps ¢ : V' — X such that ker¢ = W.

Then g(W) = >~ f(U), so by Mobius inversion

f(W) _ Z ML(W U)xn—dimU'
U: VOUDW

In particular, if we take W to be the zero subspace 0 = 0, we obtain
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Z wr (6, U)(En_dim U
UCVv

(3a) — Z (0, U)x”*’”(U) (where r = rank function of L)
UeL

= #t{one-to-one linear maps ¢ : V — X}

(3b) = (@-DE-glz—¢) - (x—¢").

[Choose an ordered basis {vy,...,v,} for V, and send each v; to a vector in X not in the linear span of

{d(v1), ... d(vim1)}]
This is just an identity of polynomials (in the ring Q[z], if you like). So we can equate the constant coefficients
in (Ba) and BH), which gives

B0 (0.1) = (1)),



The Characteristic Polynomial

Definition 1. Let P be a finite graded poset with rank function r, and suppose that 7(1) = n.

characteristic polynomial of P is defined as

x(P;x) = Zu(@z)m"#('z).

zeP
This is an important invariant of a poset, particularly if it is a lattice.

e We have just seen that

X(Ln(g)iz) = (z—D(@—q)(z—¢*) - (x—q"").

e If P is a product of n chains, then the elements

i) = S E0(7) = o

k=0
e II,, has a nice characteristic polynomial, which you will see soon.

The characteristic polynomial is a specialization of the Tutte polynomial:

The

Theorem 2. Let L be a geometric lattice with atoms E. Let M be the corresponding matroid on E, and r

its rank function. Then

X(Liz) = (=1)"MT(M; 1 - 2,0).

Proof. We have

(=1)"M7(M; 1 —2,0) = (—=1)"M) Z (—z) M) =r(A)(_1)lAl=r(4)

ACE
— ZxT(M)fT(A)(_l)\A\
ACE
= 3 3 (e | arn—r0
KeL | ACE
A=K
J(K)

so it suffices to check that f(K) = uz(0, K). To do this, we use Mdbius inversion on L. For K € L, let

g(K) = 37 (~p.

ACE
ACK

Sog=f-Cand f =g-pin I(L). Then g(0) = 1, but if J # 0 then g(J) = 0, because the sum ranges over

all subsets of the atoms lying below K, so by Mobius inversion (this time, ([[a)) we have

FK) = Y wK)g(J) = u(0,K)
J<K
as desired.



