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The Chromatic Polynomial

Let G = (V, E) be a graph. A k-coloring of G is a function f : V → [k]; the coloring is proper if f(v) 6= f(w)
whenever vw ∈ E. The chromatic function of G is defined as

χ(G; k) = # of proper colorings of G}.

Theorem 1. Let G be a graph with n vertices and c components. Let

χ̃(G; k) = (−1)n−ckcT (G, 1 − k, 0).

Then χ̃(G; k) = χ(G; k).

Proof. First, we show that the chromatic function satisfies the recurrence

χ(G; k) = kn if E = ∅;(1)

χ(G; k) = 0 if G has a loop;(2)

χ(G; k) = (k − 1)χ(G/e; k) if e is a coloop;(3)

χ(G; k) = χ(G − e; k) − χ(G/e; k) otherwise.(4)

If E = ∅ then every one of the kn colorings of G is proper, and if G has a loop then it has no proper colorings,
so (1) and (2) are easy.

Suppose e = xy is not a loop. Let f be a proper k-coloring of G − e. If f(x) = f(y), then we can identify
x and y to obtain a proper k-coloring of G/e. If f(x) 6= f(y), then f is a proper k-coloring of G. So (4)
follows.

This argument applies even if e is a coloop. In that case, however, the component H of G containing e
becomes two components H ′ and H ′′ of G − e, whose colorings can be chosen independently of each other.
So the probability that f(x) = f(y) in any proper coloring is 1/k, implying (3).

(A corollary, by induction on |V |, is that χ(G; k) is a polynomial in k, and thus has the right to be called
the chromatic polynomial of G.)

The graph G − e has n vertices and either c + 1 or c components, according as e is or is not a coloop.
Meanwhile, G/e has n − 1 vertices and c components. By the recursive definition of the Tutte polynomial

χ̃(G; k) = (−1)n−ckcT (G, 1 − k, 0)

=



















kn if E = ∅,

0 if e is a loop,

(1 − k)(−1)n+1−ckcT (G/e, 1 − k, 0) if e is a coloop,

(−1)n−ckc (T (G − e, 1 − k, 0) + T (G/e, 1 − k, 0)) otherwise

=



















kn if E = ∅,

0 if e is a loop,

(k − 1)χ(G/e; k) if e is a coloop,

χ(G − e; k) − χ(G/e; k) otherwise

which is exactly the recurrence satisfied by the chromatic polynomial. This proves the theorem. �

This result raises the question of what this specialization of T (M) means in the case that M is a an arbitrary
(not necessarily graphic) matroid. Stay tuned!



Acyclic Orientations

An orientation D of a graph G = (V, E) is an assignment of a direction to each edge xy ∈ E (either ~xy or
~yx). A directed cycle is a sequence (x0, x1, . . . , xn−1) of vertices such that ~xixi+1 is a directed edge for every
i. (Here the indices are taken modulo n.)

An orientation is acyclic if it has no directed cycles. Let A(G) be the set of acyclic orientations of G, and
let a(G) = |A(G)|.

Theorem 2 (Stanley 1973). For every graph G on n vertices, we have

a(G) = T (G; 2, 0) = (−1)n−1χ(G; −1).

Proof. The second equality is a consequence of Theorem 1. Plugging x = 2 and y = 0 into the Definition of
the Tutte polynomial, we obtain the recurrence we need to establish in order to prove the first equality:

(A1) If E = ∅, then a(G) = 1.
(A2a) If e ∈ E is a loop, then a(G) = 0.
(A2b) If e ∈ E is a coloop, then a(G) = 2a(G/e).
(A3) If e ∈ E is neither a loop nor a coloop, then a(G) = a(G − e) + a(G/e).

(A1) holds because the number of orientations of G is 2|V |, and any orientation of a forest (in particular,
an edgelesss graph) is acyclic.

For (A2a), note that if G has a loop then it cannot possibly have an acyclic orientation.

If G has a coloop e, then e doesn’t belong to any cycle of G, so any acyclic orientation of G/e can be extended
to an acyclic orientation of G by orienting e in either direction, proving (A2b).

The trickiest part is (A3). Fix an edge e = xy ∈ E(G). For each orientation D of G, let D̃ be the orientation
produced by reversing the direction of e, and let

A1 = {D ∈ A(G) | D̃ ∈ A(G)},

A2 = {D ∈ A(G) | D̃ 6∈ A(G)}.

Clearly a(G) = |A1| + |A2|.

Let D be an acyclic orientation of G − e. If D has a path from x to y (for short, an “x, y-path”) then it
cannot have a y, x-path, so directing e as ~xy (but not e = ~yx) produces an acyclic orientation of G; all this
is true if we reverse the roles of x and y. We get every orientation in A2 in this way. On the other hand,
if D does not have either an x, y-path or a y, x-path, then we can orient e in either direction to produce an
orientation in A1. Therefore

(5) a(G − e) =
1

2
|A1| + |A2|.

Now let D be an acyclic orientation of G/e, and let D̂ be the corresponding acyclic orientation of G − e. I

claim that D̂ can be extended to an acyclic orientation of G by orienting e in either way. Indeed, if it were
impossible to orient e as ~xy, then the reason would have to be that D̂ contained a path from y to x, but y
and x are the same vertex in D and D wouldn’t be acyclic. Therefore, there is a bijection between A(G/e)

and matched pairs {D, D̃} in A(G), so

(6) a(G/e) =
1

2
|A1|.

Now combining (5) and (6) proves (A3). �



Some other related graph-theoretic invariants you can find from the Tutte polynomial:

• The number of totally cyclic orientations, i.e., orientations in which every edge belongs to a directed
cycle (HW problem).

• The flow polynomial of G, whose value at k is the number of edge-labelings f : E → [k − 1] such
that the sum at every vertex is 0 mod k.

• The reliability polynomial f(p): the probability that the graph remains connected if each edge is
deleted with independent probability p.

• The “enhanced chromatic polynomial”, which enumerates all q-colorings by “improper edges”:

χ̃(q, t) =
∑

f :V →[q]

t#{xy∈E | f(x)=f(y)}.

This is essentially Crapo’s coboundary polynomial, and provides the same information as the Tutte
polynomial.

• And more; the canonical source for all things Tutte is T. Brylawski and J. Oxley, “The Tutte
polynomial and its applications,” Chapter 6 of Matroid applications, N. White, editor (Cambridge
Univ. Press, 1992).

Basis Activities

We know that T (M ; x, y) has nonnegative integer coefficients and that T (M ; 1, 1) is the number of bases
of M . These observations suggest that we should be able to interpret the Tutte polynomial as a generating
function for bases: that is, there should be combinatorially defined functions i, e : B(M) → N such that

(7) T (M ; x, y) =
∑

B∈B(M)

xi(B)ye(B).

In fact, this is the case. The tricky part is that i(B) and e(B) must be defined with respect to a total order
on the ground set E, so they are not really invariants of B itself. However, another miracle occurs: the
right-hand side of (7) does not depend on this choice of total order.

Index the ground set of E as {e1, . . . , en}, and totally order the elements of E by their subscripts.

Definition 1. Let B be a basis of M .

• Let ei ∈ B. The fundamental cocircuit C∗(ei, B) is the unique cocircuit in (E \B)∪ ei. That is,

C∗(ei, B) = {ej | B \ ei ∪ ej ∈ B}.

We say that ei is internally active with respect to B if ei is the minimal element of C(ei, B).

• Let ei 6∈ B. The fundamental circuit C(ei, B) is the unique circuit in B ∪ ei. That is,

C(ei, B) = {ej | B \ ej ∪ ei ∈ B}.

We say that ei is externally active with respect to B if ei is the minimal element of C(ei, B).

• Finally, we let e(B) and i(B) denote respectively the number of externally active and internally
active elements with respect to B.

Here’s an example. Let G be the graph with edges labeled as shown below, and let B be the spanning tree
{e2, e4, e5} shown in red. The middle figure shows C(e1, B), and the right-hand figure shows C∗(e5, B).
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Then

C(e1, B) = {e1, e4, e5} so e1 is externally active;

C(e3, B) = {e2, e3, e5} so e3 is not externally active.

Therefore e(B) = 1. Meanwhile,

C∗(e2, B) = {e2, e3} so e1 is internally active;

C∗(e4, B) = {e1, e4} so e3 is not internally active;

C∗(e5, B) = {e1, e3, e5} so e3 is not internally active.

Therefore i(B) = 1.

Theorem 3. Let M be a matroid on E. Fix a total ordering of E and define i, e : B(M) → N as above.

Then (7) holds.

Thus, in the example above, the spanning tree B would contribute the monomial xy = x1y1 to T (G; x, y).

The proof, which I’ll omit, is just a matter of bookkeeping. It’s a matter of showing that the generating
function on the right-hand side of (7) satisfies the recursive definition of the Tutte polynomial.


