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More Matroid Constructions

2. Direct sum.

Let E1, E2 be disjoint sets, and let Bi be a basis system for a matroid Mi on Ei. The direct sum M1 ⊕M2

is the matroid on E1 ∪ E2 with basis system

B = {B1 ∪ B2 | B1 ∈ B1, B2 ∈ B2}.

(I’ll omit the routine proof that this is a basis system.)

If M1, M2 are linear matroids whose ground sets span vector spaces V1, V2 respectively, then M1 ⊕M2 is the
matroid you get by regarding the vectors as living in V1 ⊕ V2: the linear relations have to come either from
V1 or from V2.

If G1, G2 are graphs with disjoint vertex sets, then M(G1) ⊕ M(G2) ∼= M(G1 + G2), where + denotes the
disjoint union. Actually, something more is true: you can identify any vertex of G1 with any vertex of G2

and still get a graph whose associated graphic matroid is M(G1)⊕M(G2) (such as G in the following figure).
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Corollary: Every graphic matroid arises from a connected graph.

Direct sum is additive on rank functions: for A1 ⊆ E1, A2 ⊆ E2, we have

rM1⊕M2
(A1 ∪ A2) = rM1

(A1) + rM2
(A2).

The geometric lattice of a direct sum is a (Cartesian) product of posets:

L(M1 ⊕ M2) ∼= L(M1) × L(M2),

subject to the order relations (F1, F2) ≤ (F ′
1
, F ′

2
) iff Fi ≤ F ′

i
in L(Mi) for each i. (This is the operation you

constructed in problem set #1, problem #2.)

As you should expect from an operation called “direct sum”, and as the last two equations illustrate, pretty
much all of the properties of M1 ⊕ M2 can be deduced easily from those of its summands.

Definition 1. A matroid that cannot be written nontrivially as a direct sum of two smaller matroids is
called connected or‡ indecomposable.

Proposition 1. Let G = (V, E) be a loopless graph. Then M(G) is indecomposable if and only if G is

2-connected: not only is it connected, but it can’t be disconnected by deleting a single vertex.

The “only if” direction is immediate: the discussion above implies that

M(G) =
⊕

H

M(H)

where H ranges over all the blocks (maximal 2-connected subgraphs) of G.

‡The first term is standard, but I prefer “indecomposable” to avoid potential confusion with the graph-theoretic meaning of

“connected”.



We’ll prove the other direction later.

Remark: If G ∼= H as graphs, then clearly M(G) ∼= M(H). The converse is not true: if T is any tree (or
even forest) on n vertices, then every set of edges is acyclic, so the independence complex is the Boolean
algebra Bn (and, for that matter, so is the lattice of flats).

In light of Proposition 1, it is natural to suspect that every 2-connected graph is determined up to isomor-
phism by its graphic matroid, but even this is not true; the 2-connected graphs below are not isomorphic,
but have isomorphic matroids.

More on this later.

3. Deletion and contraction.

Definition 2. Let M be a matroid on E with basis system B, and let e ∈ E.

(1) If e is not a coloop, then the deletion of e is the matroid M − e (or M \ e) on E \ {e} with bases

{B | B ∈ B, e 6∈ B}.

(2) If e is not a loop, then the contraction of e is the matroid M/e (or M : e) on E \ {e} with bases

{B \ {e} | B ∈ B, e ∈ B}.

Again, the terms come from graph theory. Deleting an edge of a graph means what you think it means,
while contracting an edge means to throw it away and to glue its endpoints together.

e

G G / eG − e

Notice that contracting can cause some edges to become parallel, and can cause other edges (namely, those
parallel to the edge you’re contracting) to become loops. In matroid language, deleting an element from a
simple matroid always yields a simple matroid, but the same is not true for contraction.

How about the linear setting? Let V be a vector space over a field F, let E ⊂ V be a set of vectors with
linear matroid M , and let e ∈ E. Then M − e is just the linear matroid on E \ {e}, while M/e is what you
get by projecting E \ {e} onto the quotient space V/(Fe). (For example, if e is the ith standard basis vector,
then erase the ith coordinate of every vector in E \ {e}.)



Deletion and contraction are reversed by duality:

(M − e)∗ ∼= M∗/e and (M/e)∗ ∼= M∗ − e.

Example: If M is the uniform matroid Uk(n), then M − e ∼= Uk(n − 1) and M/e ∼= Uk−1(n − 1) for every
ground set element e.

Many invariants of matroids can be expressed recursively in terms of deletion and contraction. The following
fact is immediate from Definition 2.

Proposition 2. Let M be a matroid on ground set E, and let b(M) denote the number of bases of M . For

every e ∈ E, we have

b(M) =











b(M − e) if e is a loop;

b(M/e) if e is a coloop;

b(M − e) + b(M/e) otherwise.

Example: If M ∼= Uk(n), then b(M) =
(

n

k

)

, and the recurrence of Proposition 2 is just the Pascal relation
(

n

k

)

=

(

n − 1

k

)

+

(

n

k − 1

)

.

This observation is the tip of an iceberg called the Tutte polynomial of a matroid.


