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Geometric Lattices and Matroids

Warning: If A is a set and e isn’t, then I am going to abuse notation by writing A ∪ e and A \ e instead of
A ∪ {e} and A \ {e}, when no confusion can arise.

Recall that a matroid closure operator on a finite set E is a map A 7→ Ā on subsets A ⊆ E satisfying

A ⊆ Ā = Ā;(1a)

A ⊆ B =⇒ Ā ⊆ B̄;(1b)

e 6∈ Ā, e ∈ A ∪ f =⇒ f ∈ A ∪ e (the exchange condition).(1c)

A matroid M is then a set E (the “ground set”) together with a matroid closure operator. A closed subset
of M (i.e., a set that is its own closure) is called a flat of M . The matroid is called simple if ∅ and all
singleton sets are closed.

Theorem 1. 1. Let M be a simple matroid with finite ground set E. Let L(M) be the poset of flats of M ,

ordered by inclusion. Then L(M) is a geometric lattice, under the operations A∧B = A∩B, A∨B = A ∪ B.

2. Let L be a geometric lattice and let E be its set of atoms. Then the function Ā = {e ∈ E | e ≤
∨

A} is a

matroid closure operator on E.

Proof. For assertion (1), we start by showing that L(M) is a lattice. The intersection of flats is a flat (an
easy exercise), so the operation A ∧ B = A ∩ B makes L(M) into a meet-semilattice. It’s bounded (with

0̂ = ∅̄ and 1̂ = E), so it’s a lattice by [1/25/08, Prop. 2]. Meanwhile, A ∪ B is the meet of all flats containing
both A and B.

By definition of a simple matroid, the singleton subsets of E are atoms in L(M). Every flat is the join of the
atoms corresponding to its elements, so L(M) is atomic. The next step is to show that L(M) is semimodular.

Claim: If F ∈ L(M) and e ∈ E \ F , then F l F ∨ {e}.

Indeed, if F ( F ′ ⊆ F ∨ {e} = F ∪ {e}, then for any f ∈ F ′ \ F , we have e ∈ F ∨ {f} ⊂ F ′ by (1c), so
F ′ = F ∨ {e}, proving the claim.

On the other hand, if F l F ′ then F ′ = F ∨ {e} for any atom e ∈ F ′ \ F . So we have exactly characterized
the covering relations in L(M). It follows that L is ranked, with rank function

r(F ) = min
{

|B| : B ⊂ E, F =
∨

B
}

.

(Such a set B is called a basis of F .)

We now need to show that r satisfies the submodular inequality. Let F, F ′ be flats and let G = F ∧ F ′. Let

G l G ∨ {e1} l G ∨ {e1} ∨ {e2} l · · · l G ∨ {e1} ∨ · · · ∨ {ep} = F

G l G ∨ {e′
1
} l G ∨ {e′

1
} ∨ {e′

2
} l · · · l G ∨ {e′

1
} ∨ · · · ∨ {e′q} = F ′

be maximal chains, so that

(2) r(F ) − r(G) = p and r(F ′) − r(G) = q.

But then G ∪ {e1, . . . , ep, e
′

1
, . . . , e′q} = F ∨ F ′, so

F ≤ F ∨ {e′
1
} ≤ · · · ≤ F ∨ {e′

1
} ∨ · · · ∨ {e′q} = F ∨ F ′,

where each ≤ is either l or =. So r(F ∨ F ′) − r(G) ≤ p + q, which when combined with (2) implies
submodularity.



For assertion (2), it is easy to check that A 7→ Ā is a closure operator, and that Ā = A for |A| ≤ 1. So
the only nontrivial part is to establish (1c).

Note that if L is semimodular, e ∈ L is an atom, and x 6≥ e, then x ∨ e m e (because r(x ∨ e) − r(x) ≤
r(e) − r(x ∧ e) = 1 − 0 = 1).

Accordingly, suppose that e 6∈ Ā but e ∈ A ∪ f . Let x =
∨

A ∈ L. Then

x l x ∨ f

and
x < x ∨ e ≤ x ∨ f

which implies that x ∨ f = x ∨ e, and in particular f ≤ x ∨ e = A ∪ e, proving that A 7→ Ā is a matroid
closure operator. �

In view of this bijection, we can describe a matroid on ground set E by the function A 7→ r(Ā), where r is
the rank function of the associated geometric lattice. It is standard to abuse notation by calling this function
r also. Formally:

Definition 1. A matroid rank function on E is a function r : 2E → N satisfying

r(A) ≤ |A|; and(3a)

r(A) + r(B) ≥ r(A ∩ B) + r(A ∪ B)(3b)

for all A, B ⊆ E.

Example 1. Let n = |E| and 0 ≤ k ≤ E, and define

r(A) = min(k, |A|).

This clearly satisfies (3a) and (3b). The corresponding matroid is called the uniform matroid Uk(n), and
has closure operator

Ā =

{

A if |A| < k,

E if |A| ≥ k.

So the flats of M of the sets of cardinality < k, as well as (of course) E itself. Therefore, the lattice of flats
looks like a Boolean algebra Bn that has been truncated at the kth rank. For n = 3 and k = 2, this lattice
is M5; for n = 4 and k = 3, it is the following:

If S is a set of n points in general position in Fk, then the corresponding matroid is isomorphic to Uk(n).
This sentence is tautological, in the sense that it can be taken as a definition of “general position”. Indeed,
if F is infinite and the points are chosen randomly (in some reasonable analytic or measure-theoretic sense),
then L(S) will be isomorphic to Uk(n) with probability 1. On the other hand, F must be sufficiently large
(in terms of n) in order for Fk to have n points in general position.

As for “isomorphic”, here’s a precise definition.

Definition 2. Let M, M ′ be matroids on ground sets E, E ′ respectively. We say that M and M ′ are
isomorphic, written M ∼= M ′, if there is a bijection f : E → E ′ meeting any (hence all) of the following
conditions:

(1) There is a lattice isomorphism L(M) ∼= L(M ′);
(2) r(A) = r(f(A)) for all A ⊆ E. (Here f(A) = {f(a) | a ∈ A}.)

(3) f(A) = f(Ā) for all A ⊆ E.

In general, every equivalent definition of “matroid” (and there are several more coming) will induce a
corresponding equivalent notion of “isomorphic”.



Graphic Matroids

One important application of matroids is in graph theory. Let G be a finite graph with vertices V and edges
E. For convenience, we’ll write e = xy to mean “e is an edge with endpoints x, y”; this should not be taken
to exclude the possibility that e is a loop (i.e., x = y) or that some other edge might have the same pair of
endpoints.

Definition 3. For each subset A ⊂ E, the corresponding induced subgraph of G is the graph G|A with
vertices V and edges A. The graphic matroid or complete connectivity matroid M(G) on E is defined by the
closure operator

(4) Ā = {e = xy ∈ E | x, y belong to the same component of G|A}.

Equivalently, e = xy ∈ Ā if there is a path between x, e consisting of edges in A (for short, an A-path). For
example, in the following graph, 14 ∈ Ā because {12, 24} ⊂ A.
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Proposition 2. The operator A 7→ Ā defined by (4) is a matroid closure operator.

Proof. It is easy to check that A ⊆ Ā for all A, and that A ⊆ B =⇒ Ā ⊆ B̄. If e = xy ∈ Ā, then x, y can
be joined by an Ā-path P , and each edge in P can be replaced with an A-path, giving an A-path between
x and y.

Finally, suppose e = xy 6∈ Ā but e ∈ A ∪ f . Let P be an (A ∪ f)-path; in particular, f ∈ P . Then P ∪ f is
a cycle, from which deleting f produces an (A ∪ e)-path between the endpoints of f . �
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