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Modular and Semimodular Lattices

Definition 1. A lattice L is modular if for every x, y, z ∈ L with x ≤ z,

(1) x ∨ (y ∧ z) = (x ∨ y) ∧ z.

It is (upper) semimodular if for every x, y ∈ L,

(2) x ∧ y l y =⇒ x l x ∨ y.

Last time, we showed that modular =⇒ semimodular.

Lemma 1. Suppose L is semimodular and let x, y, z ∈ L. If x l y, then either x∨ z = y∨ z or x∨ z l y∨ z.

Proof. Let w = (x ∨ z) ∧ y). Note that x ≤ w ≤ y. Therefore, either w = x or w = y.

• If w = y, then x ∨ z ≥ y. So x ∨ z = y ∨ (x ∨ z) = y ∨ z.
• If w = x, then (x ∨ z) ∧ y = x l y. Therefore, (x ∨ z) l (x ∨ z) ∨ y = y ∨ z. �

Theorem 2. L is semimodular if and only if it is ranked, with a rank function r satisfying

(3) r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y) ∀x, y ∈ L.

Proof. Suppose that L is a ranked lattice with rank function r satisfying (3). If x ∧ y l y, then x ∨ y > x

(otherwise x ≥ y and x ∧ y = y). On the other hand, r(y) = r(x ∧ y) + 1, so by (3)

r(x ∨ y) − r(x) ≤ r(y) − r(x ∧ y) = 1

which implies that in fact x ∨ y m x.

The hard direction is showing that a semimodular lattice has such a rank function. First, observe that if L

is semimodular, then

(4) x ∧ y l x, y =⇒ x, y l x ∨ y.

Denote by c(L) the maximum length∗ of a chain in L. We will show that L is ranked by induction on c(L).

Base case: If c(L) = 0 or c(L) = 1, then this is trivial.

Inductive step: Suppose that c(L) = n ≥ 2. Assume by induction that every semimodular lattice with no
chain of length c(L) has a rank function satisfying (3).

First, we show that L is ranked.

Let 0̂ = x0 l x1 l · · ·l xn−1 l xn = 1̂ be a chain of maximum length. Let 0̂ = y0 l y1 l · · ·l ym−1 l ym = 1̂
be any maximal† chain in L. We wish to show that m = n.

Let L′ = [x1, 1̂] and L′′ = [y1, 1̂]. By induction, these sublattices are both ranked. Moreover, c(L′) = n − 1.

If x1 = y1 then we are done by induction, since the interval L′ = [x1, 1̂] is a lattice and c(L′) = n − 1. On

the other hand, if x1 6= y1, then let z1 = x1 ∨ y1. By (4), z1 covers both x1 and y1. Let z1, z2, . . . , 1̂ be a
maximal chain in L (thus, in L′ ∩ L′′).

∗Remember that the length of a chain is the number of minimal relations in it, which is one less than its cardinality as a
subset of L. So, for example, c(Bn) = n, not n + 1.

†The terms “maximum” and “maximal” are not synonymous. “Maximum” means “of greatest possible cardinality”, while
“maximal” means “not contained in any other such object”. In general, “maximum” is a stronger condition than “maximal”.
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Since L′ is ranked and z mx1, the chain z1, . . . , 1̂ has length n−2. So the chain y1, z1, . . . , 1̂ has length n−1.

On the other hand, L′′ is ranked and y1, y2, . . . , 1̂ is a maximal chain, so it also has length n − 1. Therefore
the chain 0̂, y1, . . . , 1̂ has length n as desired.

Second, we show that the rank function r of L satisfies (3).

Let x, y ∈ L and take a maximal chain x∧ y = c0 l c1 l · · ·l cn−1 l cn = x. Note that n = r(x)− r(x ∧ y).
Then we have a chain

y = c0 ∨ y ≤ c1 ∨ y ≤ · · · ≤ cn ∨ y = x ∨ y.

By Lemma 1, each ≤ in this chain is either an equality or a covering relation. Therefore, the distinct elements
ci ∨ y form a maximal chain from y to x ∨ y, whose length must be ≤ n. Hence

r(x ∨ y) − r(y) ≤ n = r(x) − r(x ∧ y)

and so
r(x ∨ y) + r(x ∧ y) ≤ n = r(x) + r(y).

�

The same argument shows that L is lower semimodular if and only if it is ranked, with a rank function
satisfying the reverse inequality of (3)

Theorem 3. L is modular if and only if it is ranked, with a rank function r satisfying

(5) r(x ∨ y) + r(x ∧ y) = r(x) + r(y) ∀x, y ∈ L.

Proof. If L is modular, then it is both upper and lower semimodular, so the conclusion follows by Theorem 2.

On the other hand, suppose that L has rank function r satisfying (5). Let x ≤ z ∈ L. We already know that
x ∨ (y ∧ z) ≤ (x ∨ y) ∧ z. On the other hand,

r(x ∨ (y ∧ z)) = r(x) + r(y ∧ z) − r(x ∧ y ∧ z)

= r(x) + r(y) + r(z) − r(y ∨ z) − r(x ∧ y ∧ z)

≥ r(x) + r(y) + r(z) − r(x ∨ y ∨ z) − r(x ∧ y)

= r(x ∨ y) + r(z) − r(x ∨ y ∨ z) = r((x ∨ y) ∧ z),

implying (1). �



Geometric Lattices

Recall that a lattice is atomic if every element is the join of atoms.

Definition 2. A lattice is geometric if it is (upper) semimodular and atomic.

The term “geometric” comes from the following construction. Let E be a finite set of nonzero vectors in a
vector space V . Let

L(E) =
{

W ∩ E | W ⊆ V is a vector subspace
}

,

which is a poset under inclusion. In fact, L(E) is a geometric lattice (homework problem). Its atoms are
the singleton sets {{s} | s ∈ E}, and its rank function is r(Z) = dim〈Z〉, where 〈Z〉 denotes the linear span
of the vectors in Z.

A closely related construction is the lattice

Laff(E) =
{

W ∩ E | W ⊆ V is an affine subspace
}

.

(An affine subspace of V is a translate of a vector subspace: for example, a line or plane not necessarily

containing the origin.) In fact, any lattice of the form Laff(E) can be expressed in the form L(Ê), where

Ê is a certain point set constructed from E (homework problem) However, the rank of Z ∈ Laff(E) is
one more than the dimension of its affine span, making it more convenient to picture geometric lattices of
rank 3.

Example 1. Let E be the point configuration on the left below. Then Laff(E) is the lattice on the right
(which in this case is modular).

{ }

abc ad bd cd

a b c d

abcd

a b c

d


