
Math 725, Spring 2010

Problem Set #4

Due date: Tuesday, March 9

#1. Let n ≥ 3. The n-wheel Wn is the graph formed by starting with a cycle of length n and introducing
a new vertex adjacent to every vertex of the cycle. (Thus Wn has n + 1 vertices.)
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Show that Wn can be decomposed into two spanning trees. Count the number of ways of doing so in
terms of n. Find at least one simple graph, not isomorphic to a wheel, with minimum degree ≥ 3, that
can be decomposed into two spanning trees. (Graphs of this form turn out to be extremely important in
combinatorial rigidity theory — the study of which graphs are “rigid” (like C3) or “flexible” (like larger
cycles).

#2. Construct a simple connected graph G with the following properties: (i) every vertex has degree ≥ 2;
(ii) there is a unique vertex v of maximum degree; (iii) no minimum vertex cover contains v. (The point of
this example is to show that starting with vertices of high degree is not necessarily the best way to construct
a vertex cover.)

#3. [West 3.1.19] Let Y be a finite set and A = {A1, . . . , Am} a family of subsets of Y (not necessarily
disjoint). A system of distinct representatives (or SDR) for A is a set of distinct elements y1, . . . , ym ∈ Y

such that yi ∈ Ai for all i. Prove that A has an SDR if and only if
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∣ ≥ |S| for all S ⊆ [m].
(Hint: Transform this into a graph problem.)

#4. [West 3.1.31] Use the König-Egerváry Theorem to prove Hall’s Theorem [Theorem 3.1.11 on p.110 of
West]. That is, assume that α′(G) = β(G) for G bipartite, and use that fact to come up with an alternate
proof of Hall’s Theorem. You should not assume from the start that Hall’s Theorem holds (else this exercise
would be trivial!), and your proof should not resemble West’s proof of either of these results.

#5. [Schrijver] Let G = (V,E) be a simple graph with n = n(G) and δ(G) ≥ 2. Define a bimatching to be
an edge set B ⊆ E such that no vertex belongs to more than two edges in B, and define a bicover to be an
edge set C ⊆ E if every vertex belongs to at least two edges in C. Let

α̃ = α̃(G) = max{|B| : B is a bimatching},

β̃ = β̃(G) = min{|C| : C is a bicover}.

Prove that α̃ ≤ β̃ and that α̃ + β̃ = 2n. (Hint: As in the proof of Gallai’s theorem, show separately that

α̃ + β̃ ≤ 2n and that α̃ + β̃ ≥ 2n.)



#6. [West 8.4.27(b), modified] A digraph D is called transitive if, whenever u → v and v → w are edges,
then so if u → w.

When drawing a transitive digraph, it’s enough to specify a set of edges whose transitive closure contains all
the other edges. For example, a transitive digraph whose edges include those shown on the left below must
in fact contain all the edges shown on the right — but the right-hand picture is disgusting, so it’s easier to
show the left-hand picture and just remember that it’s supposed to be transitive.

A path cover in a transitive digraph is a collection of directed paths that partition the vertex set (see figure
on left, below — note that the bottom edges of the big green path is not shown, but it is in the transitive
closure of the edges shown). An independent set is a collection of vertices no two of which are joined by any
directed path (see figure on right, below).

Finally, the split of a digraph D is the undirected, bipartite graph G = S(D) defined as follows: for each
vertex v ∈ V (D), there are two vertices v−, v+ ∈ V (G), and for each edge u → v in D, there is an edge
u+v− in G. (See p. 59 of West.)

(i) Prove that if {P1, . . . , Pn} is any path cover of a digraph D and {v1, . . . , vm} is an independent set in D,
then n ≥ m.

(ii) By applying the König-Egerváry Theorem to the split S(D) of D, prove that the minimum size of a path
cover equals the maximum size of an independent set.

This result is known as Dilworth’s Theorem, and is often stated in the equivalent context of partially ordered
sets rather than transitive digraphs. (It’s also possible to deduce König-Egerváry from Dilworth.)


