Math 725, Spring 2010 Problem Set #2 Due date: Tuesday, February 9

#1. Problem 1.2.26 in West.

#2. Let G be a simple graph with n vertices and e edges. The clique number $\omega = \omega(G)$ is the largest number of vertices in a clique in G. (For example, $\omega(C_3) = 3$, but $\omega(C_n) = 2$ for $n \ge 4$.) Prove that if G is not a complete graph, then

$$e \le \frac{(\omega+2)(\omega-1)n(n-1)}{2\omega(\omega+1)}.$$

#3. (a) Let $k \ge 2$ and let G be a k-regular bipartite graph. Prove that G has no cut-edge. (Hint: Let e be a cut-edge and let G' be one of the components of G - e. Count the edges of G' in two ways.)

(b) Construct a connected nonbipartite 3-regular graph with a cut-edge. (This shows that the condition "bipartite" really is necessary in (a).)

#4. Problem 1.2.29 in West.

#5. A caterpillar is a tree in which some path (the "spine") either contains or is incident to every edge. (See p. 88.) Let T be a tree with ℓ leaves. Prove that T is a caterpillar if and only if its diameter is $n - \ell + 1$.

#6. Problem 2.1.3.7 in West. (This is called the symmetric exchange property for spanning trees.)

#7. Let G be a graph and fix an (arbitrary) orientation. The signed incidence matrix M of G is constructed as follows: Choose an orientation D of G. Build a matrix M with a column for each edge of G and a row for each vertex, and entries

$$m_{v,e} = \begin{cases} +1 & \text{if } v = \text{tail}(e), \\ -1 & \text{if } v = \text{head}(e), \\ 0 & \text{otherwise.} \end{cases}$$

(This is the same thing as an incidence matrix of a digraph; see Definition 1.4.10, p.56.) For each edge $e \in E(G)$, let M_e denote the column of M corresponding to e. For each $A \subseteq E(G)$, let $M_A = \{M_e : e \in A\}$.

For example, let G be the graph shown below.

- (a) Pick an orientation of D and write out the corresponding signed incidence matrix.
- (b) For which edge sets $A \subseteq E(G)$ does M_A form a basis for the column space of M?
- (c) For which A is M_A linearly independent?
- (d) For which sets A does M_{13} belong to the linear span of M_A ?
- (e) Do your answers depend on the choice of orientation?
- (f) Do your answers change if you delete all the minus signs?

(g) Make as many conjectures you can about how the linear-algebraic properties of M correspond to the graph-theoretic properties of G for all graphs G.