Math 724, Fall 2013
Problem #211(c)
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Let y = Z a;x'. Taking the original recurrence, multiplying both sides by z’; and summing over i gives
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Solving this equation for y gives
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First, let’s take care of the easy part:
A=ag Z(Sx)i = Z?;iaoxi.
i=0 i=0

Second, let’s work on B:
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When we multiply out the two infinite sums, the contributions to the coefficient of 2 will come from pairs
of summands with p + ¢ =14, i.e., ¢ =i — p. That is:
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This sum is a partial geometric series and so we can boil it down. Specifically,
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SO we can rewrite as
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Putting everything back together, we get
y=A+B= Z ‘ag +2(3° = 2%)] 2

SO

a; = 3'ag + 2(3° — 2%).

Let’s check this in Sage:

var(’a0’)
def recursiveA(i):
if 1 ==

answer a0l
else:

answer = 3 * recursiveA(i-1) + 271
return answer

closedA = lambda i: 37i * a0 + 2 * 371 * (1-(2/3)"1)

[recursiveA(i) - closedA(i) for i in range(10)]
## Look Ma, all zeros!

Here is a better way to attack B, suggested by Kyle in class on 11/8: expand it in partial fractions. Write
B 2x _ P n Q .
(1-22)(1-3z) 1—-2z 1-3z
Cross-multiplying and clearing denominators gives
20 =P(1-32)+Q(1 —2x) = (P+ Q) + (=3P — 2Q)x.
Therefore P+ Q = 0 and —3P — 2(Q) = 2. Solving this system gives P = —2 and @ = 2, so
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with less hassle than before.



