
Math 724, Fall 2013
Homework #7

Instructions: Write up your solutions in LaTeX and hand in a hard copy in class on Monday, Decem-
ber 9. Collaboration is allowed (and in fact encouraged), but each student must write up his or her solutions
independently and acknowledge all collaborators.

Problem #1 Bogart, Chapter 5, Supplementary Problem #2.

Problem #2 Bogart, Chapter 5, Supplementary Problem #5.

Problem #3 Bogart, Chapter 5, Supplementary Problem #8.

Problem #4 Let Cn be the cycle graph of length n — that is, the undirected graph with vertices
v1, v2, . . . , vn and edges v1v2, v2v3, . . . , vn−1vn, vnv1. Find a formula for the chromatic polynomial of Cn.

Problem #5 Let Yn be the graph Kn with one edge removed. Find the chromatic polynomial of Yn.

Problem #6 Orienting a graph means assigning a direction to each edge. We can think of a directed edge
as an arrow with a head and a tail. There are two possible orientations for each edge (even loops — you
can think of the orientations as “clockwise” and “counterclockwise”), so the total number of orientations of
a graph with e edges is 2e.

An orientation is acyclic if there is no way to walk from any vertex back to itself by following one or more
arrows. The left-hand orientation is acyclic, but the right-hand orientation is not.
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Let A(G) denote the set of acyclic orientations of G, and let α(G) = |A(G)|.

(a) What is α(G) if G is a forest? What is α(Kn)? What is α(Cn)? (Here Kn is the complete graph with
n vertices, and Cn is the cycle graph of length n.) To get at these counting problems (particularly for Kn),
observe the following. Any labeling of the vertices of G by distinct real numbers (say 1, . . . , n, where n is
the number of vertices) gives rise to an orientation by pointing every edge toward its larger endpoint. This
orientation is always acyclic (why?) Do different labelings always induce different orientations? Does every
orientation of G arise in this way?

(b) Show that α(G) = α(G− e) + α(G/e) for any edge e.

Hint: Consider the map π : A(G)→ A(G− e) given by forgetting the orientation of e. First, show that π is
onto. Second, figure out which acyclic orientations of A(G− e) arise from one acyclic orientation of G and
which from two. This should give you a combinatorial interpretation for the “overcount” α(G)− α(G− e).
Use a bijection to show that this overcount is exactly α(G/e).

(c) Find a formula for α(G) in terms of the chromatic polynomial χG(k). This should definitely knock your
socks off.
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Problem #7 Let V = [n] and let G be a graph with vertex set V . The chromatic symmetric function
X(G) of G is the formal power series defined by

X(G) =
∑
f

n∏
i=1

xf(i)

where the sum ranges over all proper colorings f . Note that this is a power series in infinitely many variables.
An equivalent definition is

X(G) =
∑
f

∞∏
j=1

x
cj(f)
j

where cj(f) is the number of vertices that are assigned color j by the coloring f . So X(G) keeps track not
only of how many colorings are proper, but also of how many proper colorings use a specified distribution
of colors.

If you don’t want to write out all these power series, there’s a simpler way of describing X(G). Given a
partition λ ` n, let cλ(G) be the number of proper colorings with λ1 parts of color 1, λ2 parts of color 2,

etc. Then cλ(G) is the coefficient in X(G) of any monomial of the form xλ1
i1
xλ2
i2
· · · (where i1, i2, . . . are all

distinct). Therefore, in order to specify X(G), it is sufficient to say what the numbers cλ(G) are for all λ ` n.

For example, let G be the path with two edges (graph (a) below). There are 6 ways to color one vertex
red, one vertex blue and one vertex green (since every such coloring is proper, and there are 3! = 6 such
colorings), so c111 = 6. There is 1 way to color one vertex red and two vertices blue, and it is impossible to
color all three vertices magenta. So X(G) is completely specified by the values

c111(G) = 6, c21(G) = 1, c3(G) = 0.

(b) (c)(a)

(a) What is X(G) if G has no edges?

(b) What is X(G) if G = Kn?

(c) Let k be a positive integer. Explain how to derive the number of proper k-colorings from X(G). (Be
careful: there is not (to my knowledge) an easy algebraic specialization of X(G) that yields the polynomial
χG(k) — but for any number k, it is possible to obtain the number χG(k) from X(G). Therefore, all
information about G that can be obtained from χG can in principle be obtained from X(G).

(d) There are two trees on four vertices, as shown in (b) and (c) above. Show that they do not have the
same chromatic symmetric function, even though they have the same chromatic polynomial. (It is unknown
whether two nonisomorphic trees have the same chromatic symmetric function. This is an open problem
that has caused Jeremy many sleepless nights.)

Extra credit Let n be a positive integer. For 1 ≤ i < j ≤ n, define a hyperplane Hij ⊂ Rn by

Hij = {(x1, x2 . . . , xn) ∈ Rn : xi = xj}.
Now let G be a simple graph with vertex set [n] and edge set E, and let

AG =
⋃
ij∈E

Hij .

Thus AG is a subset of Rn (it is called a graphical hyperplane arrangement). In terms of G, how many
connected components does Rn \ AG have?


