Axioms and theorems for plane geometry (Short Version)

Basic axioms and theorems

Axiom 1. If A, B are distinct points, then there is exactly one line containing both A and B.

Axiom 2. AB = BA.

Axiom 3. AB = 0 iff A = B.

Axiom 4. If point C is between points A and B, then AC + BC = AB.

Axiom 5. (The triangle inequality) If C is <u>not</u> between A and B, then AC + BC > AB.

Axiom 6. Part (a): $m(\angle BAC) = 0^{\circ}$ iff B, A, C are collinear and A is not between B and C. Part (b): $m(\angle BAC) = 180^{\circ}$ iff B, A, C are collinear and A is between B and C.

Axiom 7. Whenever two lines meet to make four angles, the measures of those four angles add up to 360° .

Axiom 8. Suppose that A, B, C are collinear points, with B between A and C, and that X is not collinear with A, B and C. Then $m(\angle AXB) + m(\angle BXC) = m(\angle AXC)$. Moreover, $m(\angle ABX) + m(\angle XBC) = m(\angle ABC)$.

Axiom 9. Equals can be substituted for equals.

Axiom 10. Given a point P and a line ℓ , there is exactly one line through P parallel to ℓ .

Axiom 11. If ℓ and ℓ' are parallel lines and m is a line that meets them both, then alternate interior angles have equal measure, as do corresponding angles.

Axiom 12. For any positive whole number n, and distinct points A, B, there is some C between A, B such that $n \cdot AC = AB$.

Axiom 13. For any positive whole number n and angle $\angle ABC$, there is a point D between A and C such that $n \cdot m(\angle ABD) = m(\angle ABC)$.

Theorem 1. All right angles have the same measure, namely 90°.

Theorem 2. Every line segment \overline{AB} has exactly one midpoint.

Theorem 3. Every angle $\angle BAC$ has exactly one bisector.

Theorem 4. If C is between A and B, then there is exactly one line ℓ passing through C that is perpendicular to \overline{AB} .

Theorem 5. Any two distinct lines intersect in at most one point.

Theorem 6. The sum of the interior angles of any triangle is 180° . That is, if $\triangle ABC$ is any triangle, then $m \angle ABC + m \angle BAC + m \angle ACB = 180^{\circ}$.

Theorem 7. Suppose that two distinct lines m, m' both intersect a third line n. If alternate interior angles are equal, or if corresponding angles are equal then m and m' are parallel.

Congruence and similarity

Axiom 14. (SSS) Two triangles are congruent iff their corresponding sides are equal. That is, if $\triangle ABC$ and $\triangle A'B'C'$ are two triangles such that AB = A'B', AC = A'C', and BC = B'C', then $\triangle ABC \cong \triangle A'B'C'$.

Axiom 15. (AAA) Two triangles are similar iff their corresponding angles are equal. That is, if $m \angle BAC = m \angle B'A'C'$, $m \angle ABC = m \angle A'B'C'$, and $m \angle BCA = m \angle B'C'A'$, then $\triangle ABC \sim \triangle A'B'C'$.

Theorem 8. (ASA) Two triangles are congruent iff two pairs of corresponding angles, and the sides between them, are equal. That is, if $m \angle BAC = m \angle B'A'C'$, $m \angle ABC = m \angle A'B'C'$, and AB = A'B', then $\triangle ABC \cong \triangle A'B'C'$.

Theorem 9. (SAS) Two triangles are congruent iff two pairs of corresponding sides, and the angles between those sides, are equal. That is, if AB = A'B', AC = A'C', and $m \angle BAC = m \angle B'A'C'$, then $\triangle ABC \cong \triangle A'B'C'$.

Corollary 1. Two triangles are similar iff two pairs of corresponding sides are proportional and the angles between those sides are equal.

Other big theorems

Theorem 10. (Thales' Theorem) The base angles of an iosceles triangle are equal. That is, if AB = AC then $\angle ABC \cong \angle ACB$.

Theorem 11. Suppose that \overline{AB} is a diameter of a circle centered at O, and that C is a point on the circle. Then $m \angle ACB = 90^{\circ}$ and $m \angle BOC = 2m \angle BAC$.

Theorem 12 (Pythagorean Theorem/Gougu). If a right triangle has legs of lengths a and b and hypotenuse of length c, then $a^2 + b^2 = c^2$.

Quadrilaterals

Theorem 13. The angles of every quadrilateral add up to 360° .

Theorem 14. In a parallelogram PQRS, opposite sides and opposite angles are equal. That is, if \overrightarrow{PQ} is parallel to \overrightarrow{RS} and \overrightarrow{PS} is parallel to \overrightarrow{QR} , then the following four things are true: PQ = RS, PS = RQ, $\angle PQR \cong \angle RSP$, and $\angle QRS \cong \angle SPQ$.

Theorem 15. The diagonals of every parallelogram bisect each other. That is, if PQRS is any parallelogram, and $X = \overline{PR} \cap \overline{QS}$ is the point where its diagonals meet, then PX = RX and QX = SX.

Theorem 16. The diagonals of parallelogram PQRS meet at a right angle if and only if the parallelogram is a rhombus.

Theorem 17. The diagonals of a parallelogram are congruent to each other if and only if the parallelogram is a rectangle.

Area

Axiom 16. If two things are congruent, they have the same area.

Axiom 17. If P and Q are two sets, then $\operatorname{area}(P) + \operatorname{area}(Q) = \operatorname{area}(P \cup Q) + \operatorname{area}(P \cap Q)$ (provided that all these areas exist).

Axiom 18. A rectangle of length a and height b has area ab.

Axiom 19. If $P \subseteq Q$, then $\operatorname{area}(P) \leq \operatorname{area}(Q)$.

Theorem 18. A parallelogram with base b and height h has area bh.

Theorem 19. A triangle with base b and height h has area bh/2.