Construct a C^{∞} vector field $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ with the property that div $\mathbf{F}(x, y) \ge 0$ if $x \ge 0$ or $y \ge 0$, but div $\mathbf{F}(x, y) < 0$ if x < 0 and y < 0. (I.e., the divergence is zero on the *x*-and *y*-axes, positive in the open first, second and fourth quadrants, and negative in the open third quadrant.)

The first step is going to be to find a scalar function f to use as $\nabla \cdot \mathbf{F}$. In other words, we want to find a C^{∞} function $f : \mathbb{R}^2 \to \mathbb{R}$ that is negative in the open third quadrant (i.e., when x and y are both negative), but nonnegative everywhere else. Only after we have found f will we think about reconstructing \mathbf{F} from f.

First, let's consider a related, but simpler, problem in \mathbb{R} instead of \mathbb{R}^2 . Can we find a C^{∞} function $h : \mathbb{R} \to \mathbb{R}$ that is negative when x < 0, but nonnegative when $x \ge 0$?

Most functions you know do not behave this way — the only "standard" functions that are constant on some interval are in fact constant of all of \mathbb{R} . However, we can take advantage of the fact that exponential functions decay incredibly quickly. As x approaches 0, the value of -1/x tends to $-\infty$, and so the values of $e^{-1/x}$ approach 0. They do so fast. Very, very fast. How fast? So fast that all its higher derivatives approach zero — which means that the piecewise function

$$h(x) = \begin{cases} e^{-1/x} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

is of class C^{∞} . This fact needs to be proved, so...

Part 1: Prove that h is of class C^{∞} . In order to do so, you will have to show that all higher derivatives $h^{[k]}(x) = d^k h/dx^k$ are continuous at 0, i.e., that

$$\lim_{x \to 0} h^{[k]}(0) = 0$$

for every integer $k \ge 0$. Technically, the tool you need for this is mathematical induction, but if you don't know what that is, don't worry; check that this is true for k = 0, 1, 2 and make a reasonable argument that it will continue to be true. (If you feel like tackling the induction proof, it may be easier to prove the more general statement that $\lim_{x\to 0} \frac{d^k}{dx^k} \left(e^{-1/x}r(x)\right) = 0$ for every rational function r(x).)

Having proven (1), what's next? (If you got stuck on (1), don't panic! Just assume that h(x) is C^{∞} and keep going.) The next step is to use h(x) to constructing the function f we were looking for in the first place.

Part 2: Confirm that g(x) = h'(x) is also of class C^{∞} and is positive for all x > 0.

Why work with g instead of h? Because it can be antidifferentiated, which will be helpful when trying to construct a vector field \mathbf{F} with specified divergence.

Part 3: Use g to construct a scalar function f(x, y) of class C^{∞} that is negative when x, y are both negative, and nonnegative otherwise. (Hint: Work one quadrant at a time.)

Part 4: Having done all this work, you should now be able to solve the original problem. Construct a vector field \mathbf{F} whose divergence is f.

Part 5: Suppose we tighten up the problem constraints a bit. Can you construct a C^{∞} vector field $\mathbf{G}(x, y)$ that is negative in the open quadrant (x < 0 and y < 0), zero on the negative x- and y-axes, and strictly positive everywhere else (i.e., if x > 0 or y > 0)? (Hint: Add another couple of pieces to the construction of f(x, y).)

$\mathbf{2}$