Units for Curvature and Torsion

An excellent question came up in class on 10/11: What are the units of curvature and torsion?

The short answer is **inverse length**. Here are several reasons why this makes sense.

Let's measure length in meters (m) and time in seconds (sec). Then the units for curvature and torsion are both m^{-1} .

Explanation #1 (quick-and-dirty, and at least makes sense for curvature): As you probably know, the curvature of a circle of radius r is 1/r. In other words, if you expand a circle by a factor of k, then its curvature shrinks by a factor of k. This is consistent with the units of curvature being inverse-length. You can also check that if you scale \mathbf{x} by a factor of k, then the torsion also gets scaled by a factor of 1/k.

Explanation #2 (intuitive, geometric): Since curvature and torsion are both supposed to be intrinsic to a curve, and independent of the speed with which you move along it, their units should not involve time.

On the other hand, as you zoom in on a curve (i.e., the bigger a single unit if length looks to the naked eye), the more it looks like a line (assuming that \mathbf{x} is differentiable), and lines have zero curvature and torsion.

Explanation #3 (relies on nontrivial formulas, but at least precise):

• The formula for curvature is

$$\kappa = \frac{\|\mathbf{v}\times\mathbf{a}\|}{\|\mathbf{v}\|^3}$$

which implies that

units for
$$\kappa = \frac{(\text{units for } \mathbf{v})(\text{units for } \mathbf{a})}{(\text{units for } \mathbf{v})^3} = \frac{(\text{m}/\sec)(\text{m}/\sec^2)}{(\text{m}/\sec)^3}$$

= m⁻¹.

• Meanwhile, the formula for torsion is

$$\tau = \frac{(\mathbf{v}\times\mathbf{a})\cdot\dot{\mathbf{a}}}{\|\mathbf{v}\times\mathbf{a}\|^2}$$

(mentioned but not proved in class; it's problem #31 on p. 207). This implies that

units for
$$\tau = \frac{(\text{units for } \mathbf{v})(\text{units for } \mathbf{a})(\text{units for } \mathbf{a})}{(\text{units for } \mathbf{v})^2(\text{units for } \mathbf{a})^2} = \frac{(\text{m}/\sec)(\text{m}/\sec^2)(\text{m}/\sec^3)}{(\text{m}/\sec)^2(\text{m}/\sec)^2}$$

= m⁻¹.

Explanation #4 (most detailed, but also most general): How do units work in general? Suppose that \mathbf{x} and \mathbf{y} are vectors with units (u,u,u) and (v,v,v) respectively. What are the units of things like $\|\mathbf{x}\|, \mathbf{x} \cdot \mathbf{y}$, and $\mathbf{x} \times \mathbf{y}$?

Units of $||\mathbf{x}||$: u.

For example, velocity \mathbf{v} is a vector whose components all have units m/sec. Its magnitude $\|\mathbf{v}\|$ is speed, which is a scalar quantity with units m/sec. This is also consistent with the formula $\|\mathbf{x}\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

Units of a unit vector: None — they are pure numbers.

A unit vector represents a direction and is independent of length. Intuitively, a direction is like an angle in having no units. Algebraically, the way that we usually construct a unit vector is by taking some vector \mathbf{y} and normalizing it to $\mathbf{y}/||\mathbf{y}||$. Whatever the units of \mathbf{y} are, they cancel out.

Units of $x \cdot y$: uv.

Algebraically, we multiply components of \mathbf{x} by components of \mathbf{y} to get $\mathbf{x} \cdot \mathbf{y}$. Also, the formula $\mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|^2$ says that the units of $\mathbf{x} \cdot \mathbf{x}$ are (the units of \mathbf{x}) squared.

Units of $x \times y$: (uv,uv,uv).

Again, this works out algebraically. Geometrically, $\|\mathbf{x} \times \mathbf{y}\|$ is the area of the parallelogram spanned by \mathbf{x} and \mathbf{y} , so the units should multiply.

Units of $\partial \alpha / \partial \beta$ = units of α / units of β .

This makes sense since $\partial \alpha / \partial \beta$ represents the rate of change if α with respect to β .

Using these tools, we can figure out the units for all the quantities that describe a parametrized curve:

Name	Symbol/Formula	Units
position	x	m
velocity	$\mathbf{v} = \dot{\mathbf{x}}$	m/sec
acceleration	$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{x}}$	m/sec^2
jerk	$\dot{\mathbf{a}} = \ddot{\mathbf{x}}$	m/sec^3
arclength	$s = \ v\ $	m
unit tangent vector	$\mathbf{T}=\mathbf{v}/\ \mathbf{v}\ $	unitless
unit normal vector	$\mathbf{N} = rac{d\mathbf{T}/ds}{\ d\mathbf{T}/ds\}}$	unitless
unit binormal vector	$\mathbf{B}=\mathbf{T}\times\mathbf{N}$	unitless
curvature	$\kappa = \frac{d\mathbf{T}}{ds}$	m^{-1}
torsion	$rac{d{f B}}{ds}=- au{f N}$	(units of B) / (units of s) / (units of N) = m^{-1}