

- 1. Counting formulas for complete graphs
- 2. Working with factorials
- 3. Counting spanning trees in networks
- 4. Kruskal's algorithm

Note: Graph coloring (the "Mini-Excursion") will **not** be on Monday's test.

In the complete graph  $K_N$ :

- Number of edges in the whole graph: N(N-1)/2
- Number of edges in a spanning tree: N-1
- Number of Hamilton circuits: (N 1)!
- Number of spanning trees:  $N^{N-2}$  (Cayley's formula)

#### Number of edges in $K_N = N(N-1)/2$ .

This is the same as the formula for the number of pairwise comparisons among N candidates.

#### Number of edges in a spanning tree of $K_N = N - 1$

► This is because in any connected graph with N vertices, a spanning tree must have exactly N - 1 edges. Number of Hamilton circuits in  $K_N = (N-1)!$ 

- ► After choosing the reference vertex, there are N 1 possibilities for the second vertex, N - 2 possibilities for the third vertex, ..., 2 possibilities for the second-to-last vertex, 1 possibility for the last vertex.
- Multiplying all these numbers together gives  $(N-1)(N-2)\cdots(2)(1) = (N-1)!$

Number of spanning trees in  $K_N = N^{N-2}$ .

- We worked several examples out in class:
  - $K_1$ : 1 spanning tree (= 1<sup>-1</sup>)
  - $K_2$ : 1 spanning tree (= 2<sup>0</sup>)
  - $K_3$ : 3 spanning trees (= 3<sup>1</sup>)
  - $K_4$ : 16 spanning trees (= 4<sup>2</sup>)
  - $K_5$ : 125 spanning trees (= 5<sup>3</sup>)

 $K_N$ :  $N^{N-2}$  spanning trees

. . .

#### 2. Factorials

- 1! = 1 = 1 $2! = 1 \times 2 = 2$  $3! = 1 \times 2 \times 3 = 6$  $4! = 1 \times 2 \times 3 \times 4 = 24$  $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$ ÷  $12! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12$ = **479001600**  $13! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 13$ 
  - = **6227020800**

# $\begin{array}{l} 70! = \\ 11978571669969891796072783721689098736458938142546 \\ 42585755536286462800958278984531968000000000000000 \end{array}$

This is too many digits for most calculators.

Even if your calculator could count this high, it would probably display it as something like

1.1978571669E100.

#### **Problem #1:** Simplify 4!/3! without using a calculator.

**Problem #2:** Simplify 13!/12! without using a calculator.



#### Problem #1: Simplify 4!/3! without using a calculator.

$$3! = 1 \times 2 \times 3 = 6$$
  

$$4! = 1 \times 2 \times 3 \times 4 = 24$$
  

$$4!/3! = 24/6 = 4$$

But also,

$$\frac{4!}{3!} = \frac{1 \times 2 \times 3 \times 4}{1 \times 2 \times 3} = 4.$$

#### 2. Factorials

Similarly,

 $\frac{13!}{12!} = 6227020800/479001600 \quad (yuck)$ 

$$=\frac{1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times12\times13}{1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times12}$$

= 13.

In general,

$$\frac{\mathsf{N}!}{(\mathsf{N}-1)!}=\mathsf{N}.$$

#### 2. Factorials

Similarly,

 $\frac{13!}{12!} = 6227020800/479001600 \quad (yuck)$ 

$$=\frac{1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times12\times13}{1\times2\times3\times4\times5\times6\times7\times8\times9\times10\times11\times12}$$

= 13.

In general,

$$\frac{\mathsf{N}!}{(\mathsf{N}-1)!}=\mathsf{N}.$$



#### Sample problems:















Summary: If a network consists of a bunch of **circuits** attached to each other by **bridges**,

then the number of spanning trees is the product of the lengths of the circuits.

The other kind of network for which we can easily count trees is a **complete graph**  $K_N$ , where there are  $N^{N-2}$  spanning trees. T

Many networks are not of this form — the circuits might overlap.



Here, it is very hard to count the spanning trees.

## 4. Kruskal's Algorithm



#### Weights of edges

|   | А | В  | С | D | Е  |
|---|---|----|---|---|----|
| Α |   | 6  | 4 | 2 | 1  |
| в | 6 |    | 9 | 8 | 10 |
| С | 4 | 9  |   | 7 | 5  |
| D | 2 | 8  | 7 |   | 3  |
| Е | 1 | 10 | 5 | 3 |    |