
Minimum Spanning Trees

What if we have N vertices that we want to connect as
cheaply as possible?
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Total weight of this spanning tree: 17284 km
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(cheaper!)



Minimum Spanning Trees

Suppose that we have a weighted complete graph with N
vertices.

How can we find a spanning tree with the smallest
possible weight?

An exhaustive search of all trees is not a good idea — there
are NN−2 spanning trees to consider (and this is a very big
number!)
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Minimum Spanning Trees

Idea (sort of like the Cheapest-Link Algorithm for finding a
Hamilton circuit):

I Add edges one at a time, choosing the cheapest edge
possible.

(Break ties arbitrarily.)

I Be sure never to create a circuit.

I Stop when you have a spanning tree.

This is called Kruskal’s algorithm.
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Minimum Spanning Trees

And now, a miracle occurs. . .

Kruskal’s algorithm always works!

For example, let’s look at the weighted K4 that caused trouble
for the Nearest-Neighbor and Cheapest-Link Algorithms.
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Kruskal’s Algorithm

Tree Weight Tree Weight
AB,AC,AD 12+14+17 = 43 AC,AD,BC 14+17+15 = 46
AB,AC,BD 12+14+18 = 44 AC,AD,BD 14+17+18 = 49
AB,AC,CD 12+14+29 = 55 AC,BC,BD 14+15+18 = 47
AB,AD,BC 12+17+15 = 44 AC,BC,CD 14+15+29 = 58
AB,AD,CD 12+17+29 = 58 AC,BD,CD 14+18+29 = 61
AB,BC,BD 12+15+18 = 45 AD,BC,BD 17+15+18 = 50
AB,BC,CD 12+15+29 = 56 AD,BC,CD 17+15+29 = 61
AB,BD,CD 12+18+29 = 59 AD,BD,CD 17+18+29 = 64


