
Euler Paths and Euler Circuits

An Euler path is a path that uses every edge of a graph
exactly once.

An Euler circuit is a circuit that uses every edge of a graph
exactly once.

I An Euler path starts and ends at different vertices.

I An Euler circuit starts and ends at the same vertex.
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Euler Paths and Euler Circuits

Is it possible to determine whether a graph has an
Euler path or an Euler circuit, without necessarily
having to find one explicitly?



The Criterion for Euler Paths

Suppose that a graph has an Euler path P .

For every vertex v other than the starting and ending vertices,
the path P enters v the same number of times that it leaves v
(say s times).

Therefore, there are 2s edges having v as an endpoint.

Therefore, all vertices other than the two endpoints of
P must be even vertices.
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Then P leaves x one more time than it enters, and leaves y
one fewer time than it enters.

Therefore, the two endpoints of P must be odd vertices.
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The Criterion for Euler Paths

The inescapable conclusion (“based on reason alone!”):

If a graph G has an Euler path, then it must have
exactly two odd vertices.

Or, to put it another way,

If the number of odd vertices in G is anything other
than 2, then G cannot have an Euler path.



The Criterion for Euler Circuits

I Suppose that a graph G has an Euler circuit C .

I For every vertex v in G , each edge having v as an
endpoint shows up exactly once in C .

I The circuit C enters v the same number of times that it
leaves v (say s times), so v has degree 2s.

I That is, v must be an even vertex.
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The Criterion for Euler Circuits

I Suppose that a graph G has an Euler circuit C .

I For every vertex v in G , each edge having v as an
endpoint shows up exactly once in C .

I The circuit C enters v the same number of times that it
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The Criterion for Euler Circuits

The inescapable conclusion (“based on reason alone”):

If a graph G has an Euler circuit, then all of its vertices
must be even vertices.

Or, to put it another way,

If the number of odd vertices in G is anything other
than 0, then G cannot have an Euler circuit.



Things You Should Be Wondering

I Does every graph with zero odd vertices have an Euler
circuit?

I Does every graph with two odd vertices have an Euler
path?

I Is it possible for a graph have just one odd vertex?
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The Handshaking Theorem

The Handshaking Theorem says that

In every graph, the sum of the degrees of all vertices
equals twice the number of edges.

If there are n vertices V1, . . . ,Vn, with degrees d1, . . . , dn, and
there are e edges, then

d1 + d2 + · · · + dn−1 + dn = 2e

Or, equivalently,

e =
d1 + d2 + · · · + dn−1 + dn

2



The Handshaking Theorem

Why “Handshaking”?

If n people shake hands, and the i th person shakes hands di
times, then the total number of handshakes that take place is

d1 + d2 + · · · + dn−1 + dn
2

.

(How come? Each handshake involves two people, so the
number d1 + d2 + · · · + dn−1 + dn counts every handshake
twice.)



The Number of Odd Vertices

I The number of edges in a graph is

d1 + d2 + · · · + dn
2

which must be an integer.

I Therefore, d1 + d2 + · · · + dn must be an even number.

I Therefore, the numbers d1, d2, · · · , dn must include an
even number of odd numbers.

I Every graph has an even number of odd vertices!
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Back to Euler Paths and Circuits

Here’s what we know so far:

# odd vertices Euler path? Euler circuit?

0 No Maybe

2 Maybe No

4, 6, 8, . . . No No

1, 3, 5, . . . No such graphs exist!

Can we give a better answer than “maybe”?



Euler Paths and Circuits — The Last Word

Here is the answer Euler gave:

# odd vertices Euler path? Euler circuit?

0 No Yes*
2 Yes* No

4, 6, 8, . . . No No

1, 3, 5, No such graphs exist

* Provided the graph is connected.

Next question: If an Euler path or circuit exists, how do
you find it?
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disconnected. Such an edge is called a bridge.
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Bridges

Loops cannot be bridges, because removing a loop from a
graph cannot make it disconnected.

delete
loop e

e



Bridges

If two or more edges share both endpoints, then removing any
one of them cannot make the graph disconnected. Therefore,
none of those edges is a bridge.
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Finding Euler Circuits and Paths

“Don’t burn your bridges.”



Finding Euler Circuits and Paths

Problem: Find an Euler circuit in the graph below.
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There are two odd vertices, A and F. Let’s start at F.
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Finding Euler Circuits and Paths

Start walking at F. When you use an edge, delete it.
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Finding Euler Circuits and Paths

Up until this point, the choices didn’t matter.

But now, crossing the edge BA would be a mistake, because
we would be stuck there.

The reason is that BA is a bridge. We don’t want to cross
(“burn”?) a bridge unless it is the only edge available.
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Path so far: FEACB

A

B

F
E

D
C



Finding Euler Circuits and Paths

Path so far: FEACBD.
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Path so far: FEACBD. Don’t cross the bridge!
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Path so far: FEACBDC
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Path so far: FEACBDC Now we have to cross the bridge CF.
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Path so far: FEACBDCF
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Euler Path: FEACBDCFDBA
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Euler Path: FEACBDCFDBA
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Fleury’s Algorithm

To find an Euler path or an Euler circuit:

1. Make sure the graph has either 0 or 2 odd vertices.

2. If there are 0 odd vertices, start anywhere. If there are 2
odd vertices, start at one of them.

3. Follow edges one at a time. If you have a choice between
a bridge and a non-bridge, always choose the non-bridge.

4. Stop when you run out of edges.

This is called Fleury’s algorithm, and it always works!
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Fleury’s Algorithm: Another Example

G

K LJ M

HE

A

F

CB
D

N
O P

Q


