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Free Resolutions

Example

Let I = (xy , yz , zu), a monomial ideal in S = k[x , y , z , u].
A free resolution of S/I over S :

0 −→ S(xyzu)

β3=1

 u
x
−1


−−−→

S(xyz)
⊕

S(yzu)
⊕

S(xyzu)

β2=3

 z 0 zu
−x u 0
0 −y −xy


−−−−−−−−−−−→

S(xy)
⊕

S(yz)
⊕

S(zu)

β1=3

−→ S



Taylor complex [Taylor ’66]
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▶ vertices = monomial
generators

▶ faces = lcm

▶ always a simplex

The Taylor complex supports the free resolution of any monomial
ideal (but not minimally)
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Scarf complex [BPS ’98]
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Scarf complex removes all matching faces with same label.

▶ It might not support a free resolution . . .

▶ . . . but it is a lower bound:

▶ Up to isomorphisms, any free resolution of monomial ideal I
contains Scarf(I ) as a subcomplex.

0 −→ S(xyz)⊕S(yzu)

β2=2

 z 0
−x u
0 −y


−−−−−−−→ S(xy)⊕S(yz)⊕S(zu)

β1=3

−→ S



Powers

Power of a (monomial) ideal:

I 2 = (m1, . . . ,mp)
2 = ({mimj : 1 ≤ i ≤ j ≤ p}).

Similarly for I r when r > 2.
Taylor is never minimal for I r when r ≥ 2.



Extremal ideal [CEFMMŞS ’24]

SE = k[xA : ∅ ≠ A ⊆ [q]]

ϵi =
∏

i∈A⊆[q]

xA

Then Eq = (ϵ1, . . . , ϵq) is the extremal ideal

E3 = (ϵ1 = x1x12x13x123, ϵ2 = x2x12x23x123, ϵ3 = x3x13x23x123)

βi (I
r ) ≤ βi (E r

q)

where I is any ideal generated by q square-free monomials. So we
focus on Srq = Scarf(E r

q).

▶ What does it look like?

▶ Does it always support a minimal free resolution of E r
q?



Extremal ideal [CEFMMŞS ’24]
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An integer programming description of Srq

Theorem (EFŞS ’24)

Let σ = {ϵϵϵa1 , . . . , ϵϵϵad} ∈ Tr
q = Taylor(E r

q). Then σ ∈ Srq iff

▶ σ′ ∈ Srq for all proper subsets σ′ of σ; and

▶ b = ai are only solutions b ∈ N r
q = {c ∈ Nq : |c| = r} to:

b · eA ≤ max
i
{ai · eA} for all A ⊆ [q]

where eA =
∑

i∈A ei

(2, 0, 0) (0, 2, 0)

(0, 0, 2)

(1, 1, 0)

(1, 0, 1) (0, 1, 1)



What does Srq look like: geometric simplifications

Whether or not a set of vertices is a face of Srq is invariant under:

▶ translation (subtract a common vector)

▶ permutation of coordinates

▶ truncation of common 0’s (more generally, common entries)

{3000, 1011}

⇔ {300, 111} ⇔ {200, 011} ⇔ {002, 110} no

{2110, 2011, 1111} ⇔ {2100, 2001, 1101}
⇔ {210, 201, 111} ⇔ {110, 101, 011} yes

Checking edges reduces to checking {0u, v0} where u, v are
partitions. This allows us to find, by computer search, all edges for
r ≤ 8 and arbitrary q.
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q ≤ 4

q = 2
(r = 4)

(4, 0) (0, 4)

q = 3
(r = 4)

(4, 0, 0) (0, 4, 0)

(0, 0, 4)

U r
q = {v ∈ {0, 1}q : |v | = r}

▶ Always a facet

▶ All facets

for q ≤ 4

are translations of U r
q

▶ Only facet containing (r , 0, . . . , 0) is (r − 1, 0, . . . , 0) + U1
q

▶ For q = 4, it is drawn in 3-dimensions (octahedron), but it is
actually 5-dimensional simplex with 6 vertices. (And similarly
for larger q.)
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q ≥ 5, r = 3

Harder: Facets include translations of U r
q, but also

{21000, 00111, 11100, 11010, 11001, 10110, 10101, 10011}

which is a 4-dimensional cross-polytope

Minimal non-faces (up to permutation, and padding with 0’s)

▶ {30, 03}, {30, 12}, {300, 021}, {300, 111}, {3000, 0111}
▶ {210, 021}, {210, 012}, {2100, 0111}
▶ {2100, 0021}
▶ {21000, 12000, 00111}
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Reflection

Reflection is also a rigid motion, and so preserves being a face or
not.

Except for the part about keeping all coordinates
non-negative!

Example (Reflecting through the origin)

{3000, 2100, 2010, 2001} is a face, so its negative (reflecting
through the origin) satisfies all the conditions except for being
non-negative. Fix this by then also translating by adding the max
of each original coordinate, 3111. This gives
{0111, 1011, 1101, 1110} which is a face.

We can also reflect through a plane, again translating afterwards
to restore non-negativity. But in some cases, it may be hard to
stay integral.
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Results

Theorem (EFŞS ’24)

Srq supports a minimal free resolution of E r
q for r = 2 and for q ≤ 4.

Theorem (new)

S3q supports a minimal free resolution of E3
q . In particular, it

supports a free resolution of I 3 for any monomial ideal with q
generators.

Proof.
We find a homogeneous acyclic matching [BW ’02] (from discrete
Morse theory) that leaves exactly the Scarf complex.
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Homogeneous acyclic matching [BW ’02]

{xy , yz , zu}

ss ++
{xy , yz}

$$ ++

{xy , zu}

vv

OO

((

{yz , zu}

ss zz
{xy} {yz} {zu}

▶ Directed graph of poset of faces of Taylor complex, labeled by
lcm

▶ Partial matching M using only poset-edges whose
poset-vertices have the same label

▶ Reverse arrows on poset-edges of M
▶ If new poset is acyclic, then removing M leaves a complex

supporting free resolution



Enumeration

Scarf: fi−1(S3q) =
((q

3

)
i

)
+ lower order terms

▶ Dominant term comes from U3
q

▶ Question: For arbitrary r , is
((qr)

i

)
always dominant?

▶ This provides an upper bound for the size of a free resolution
of I 3 for any ideal I .

Taylor: fi−1(T(E3
q )) =

((q+2
3

)
i

)
Both bounds are O(q3i ), but . . .
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Comparing upper bounds

For large q

; and fixed 0 ≤ c < 1

max
i

fi (T3
q)/max

i
fi (S3q) = 2q

2+O(q)/
√
1 + 6/q

fi−1(T3
q)/fi−1(S3q) = (1− c)−q2+O(q)O(e−3cq/(1−c))

where i = c(dim(S3q)) + 1.
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▶ Prove Scarf complex supports resolution
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▶ Further properties of extremal ideal (we are working on this)
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