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Definition

A (lattice) polytope P has the integer decomposition property
(IDP) provided for all t € Z>° and (integer point) x € tP, there
exists x1, X2, ...,Xxt € P so that

X=X1+tx2+ -+ Xt.

That is, the integer points in the tt" dialation of P is a sum of t
points in P.
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(1,1,3) € 2P
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How can we build symmetric polytopes in general?
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tableaux of shape \ and content «.
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Given a partition A, one can define its Schur function
s\ € Z[x1, %2, ..., Xn] which has the form

ap ag
sa(xty ..oy Xn E X{ X2

where oo = (a1, g, . . ., ) corresponds to a semistandard
tableaux of shape \ and content «.

Example
If A =(3,2) and o = (1,2,2) we could have

2 3‘ and

213 3

(Rows weakly increase, columns strictly increase.)

So
2.2
sa(x1,x2,X3) = 2x1x5%3 + - - -
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Example

S3.2) = XX + X% + X0G + X0G + X655 + X3

+ X13X2><3 + X1X§’X3 + X1X2X§

+ 2x1X3X3 + 2x2xox3 + 2x2 X3 X3

Exponents (3,2,0), (3,1,1), and (1,2,2) appear with all their
permutations.

Theorem
If o appears as an exponent in sy, so is every permutation of a.

Sounds like our desired property for symmetric polytopes...
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Definition
The Netwon polytope of sy, N, takes the convex hull of the
content vectors.
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Theorem
Every integer point in the Newton polytope for sy is a content

vector for A (and thus appearing as an exponent in sy ).
We say sy has a Saturated Newton Polytope (SNP).

Theorem
The Newton polytope for Schur functions have IDP.
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What about combining Schur functions?

Do we maintain IDP?

In general, no! So... when does it?

» Grothendieck Polynomials (Bayer, Geockner, Hong,
McAllister, Olsen, Pickney, Vega, Yip, 2020, GRWC
collaboration)

» Good Symmetric Polynomials (Duc, Giao, Hiep, Thuy, 2023)
» 2-Partition Maximal Polytopes (2025)
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Definition
If © and A are partitions, we say u < A when

k k
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for every k. If neither yx < X nor A < i, they are pairwise
maximal.

Example

(4,3,1) < (6,2,1) since

4<6 4+3<6+2 4+3+1<6+2+1
(5,4,2) and (6,2, 1) are pairwise maximal since

5<6 5+4>6+2
Theorem

If x is an integer point in N, then x < \.
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Definition
A 2-partition maximal polytope is a Newton polytope for sy + s,
such that it contains only two pairwise maximal partitions, A and p.

Example
S(10,2,2) t S(7,7,0), Will contain (8,5,1)
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ts = Z S(t—i)A+ip

i=0

Idea:

Still to come:
1. Different lengths for partitions.
2. Different sized partitions.

3. Multiple maximal partitions.
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