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Integer Partitions

Recall: An integer partition of a positive integer n is a tuple of
numbers (ordered in weakly decreasing order) whose sum equals n.

Example
Let n = 5:

5 (5) 4 + 1 (4, 1)
3 + 2 (3, 2) 3 + 1 + 1 (3, 1, 1)
2 + 2 + 1 (2, 2, 1) 2 + 1 + 1 + 1 (2, 1, 1, 1)
1 + 1 + 1 + 1 + 1 (1, 1, 1, 1, 1)



Vector Partition Functions
Let A be an m × d integral matrix.

Goal: compute the value of the vector partition function

ϕA(b) = #{x ∈ Nd : Ax = b}

defined for b in the nonnegative linear span of the columns of A.

▶ ϕA(b) counts the number of ways to express the vector b as a
nonnegative integer linear combination of the columns of
matrix A.

Remark: If
A =

[
1 2 3 · · · n

]
,

we recover the integer partition function.



Classical Lie algebra of type Ar

slr+1(C) = {x ∈ Mr+1(C) : Tr(x) = 0}

Definitions
Let ei be the standard basis element of Rr+1.

ei =



0
...
1
...
0


⇐ i thplace

Simple roots: αi = ei − ei+1.



Classical Lie algebra of type Ar

slr+1(C) = {x ∈ Mr+1(C) : Tr(x) = 0}

Definitions
Simple roots: ∆ = {α1, α2, . . . , αr }
Positive roots: Φ+ = ∆ ∪ {αi + αi+1 + · · · + αj | 1 ≤ i ≤ j ≤ r}
Negative roots: Φ− = −Φ+

Highest root: α̃ = α1 + α2 + · · · + αr

Definition
The Weyl group is a group generated by reflections, si , through
hyperplanes that are orthogonal to the simple roots, αi .
▶ It is isomorphic to the symmetric group on r + 1 letters, Sr+1.



Rules to Compute

si(αj) =


−αi if i = j
αi + αj if |i − j | = 1
αj if |i − j | > 1

▶ Let’s calculate s2s1(α1) = s2(−α1) = −α1 − α2.

Weyl group element σ σ(α1) σ(α2) σ(α1 + α2)
1 α1 α2 α1 + α2
s1 −α1 α1 + α2 α2
s2 α1 + α2 −α2 α1

s1s2 α2 −α1 − α2 −α1
s2s1 −α1 − α2 α1 −α2

s1s2s1 −α2 −α1 −α1 − α2

Table: Weyl group elements and their action on the roots of sl3(C)



Kostant’s Partition Function (KPF)

Let ξ be in the weight lattice and

℘(ξ)

be the number of ways to write ξ as a nonnegative integral sum of
positive roots.

Example
Calculate ℘(α1 + α4 + α5 + α6) = 4.

1α1 + 1α4 + 1α5 + 1α6
1α1 + 1(α4 + α5) + 1α6
1α1 + 1α4 + 1(α5 + α6)
1α1 + 1(α4 + α5 + α6)

Warning: Do not know of general formulas for the value of KPF.



Kostant’s Weight Multiplicity Formula

The multiplicity of a weight µ in the irreducible representation of
slr+1(C) with highest weight λ can be computed via:

m(λ, µ) =
∑

σ∈W
(−1)ℓ(σ)℘(σ(λ + ρ) − µ − ρ).

▶ ρ = 1
2

∑
α∈Φ+ α

▶ W is the Weyl group
▶ ℓ(σ) is the length of σ

▶ ℘(ξ) is the KPF.

Note: m(λ, µ) is the dimension of the µ weight space.



Example
Type A6, let µ = α2 + α3, and observe

ρ := 1
2

∑
α∈Φ+

α = 3α1 + 5α2 + 6α3 + 6α4 + 5α5 + 3α6.

Calculate m(λ, µ) = m(α̃, α2 + α3).

Check the identity and simple reflections:
▶ σ = 1: ℘(1(α̃ + ρ) − ρ − µ) = ℘(α1 + α4 + α5 + α6) = 4
▶ σ = s1: ℘(s1(α̃ + ρ) − ρ − µ) = ℘(−α1 + α4 + α5 + α6) = 0
▶ σ = s2: ℘(s2(α̃ + ρ) − ρ − µ) = ℘(α1 − α2 + α4 + α5 + α6) = 0
▶ σ = s3: ℘(s3(α̃ + ρ) − ρ − µ) = ℘(α1 − α3 + α4 + α5 + α6) = 0
▶ σ = s4: ℘(s4(α̃ + ρ) − ρ − µ) = ℘(α1 + α5 + α6) = 2
▶ σ = s5: ℘(s5(α̃ + ρ) − ρ − µ) = ℘(α1 + α4 + α6) = 1
▶ σ = s6: ℘(s6(α̃ + ρ) − ρ − µ) = ℘(α1 + α4 + α5 − α6) = 0

Thus, m(α̃, α2 + α3) = 4 − 0 − 0 − 0 − 2 − 1 − 0 = 1.



Question + Motivation
What elements of the Weyl group contribute nontrivially to

KWMF?

Definition
For λ, µ integral weights of g, the Weyl alternation set is

A(λ, µ) = {σ ∈ W : ℘(σ(λ + ρ) − µ − ρ) > 0}.

Example (Cont.)

A(α̃, α2 + α3) = {1, s4, s5}

In A6, there are 7! = 5040 elements in W , but only three
contribute to m(α̃, α2 + α3).



Weyl Alternation Sets

Definition
For λ, µ integral weights of g, the Weyl alternation set is

A(λ, µ) = {σ ∈ W : ℘(σ(λ + ρ) − µ − ρ) > 0}.

Some known results:
1. In type Ar , if λ is the highest root and µ = 0, then

|A(λ, 0)| = Fr+1 (P.E. Harris, 2012).

2. In type A2, if λ is a dominant integral weight and µ is in the
root lattice, then A(λ, µ) is known (P.E. Harris, G. Mabie, H.
Lencisky, 2017).

3. In types Br , Cr , Dr , A(λ, 0) is known when λ is a sum of all
simple roots (P.E. Harris, K. Cheng, E. Insko, 2020).

4. In type Ar , if λ is the highest root and µ is a positive root,
then |A(λ, µ)| = Fi · Fr−j+1 (K. J. Harry, 2023).



Positive Roots → Negative Roots

Specifically, let µ ∈ Φ− = −Φ+.

Questions
▶ What elements are in A(λ, µ)?
▶ How many elements are in A(λ, µ)?

Note: We specialize to λ = α̃ and µ = −α̃.

Moving on...
Idea: A subword is like a letter in a new alphabet.



Positive Roots → Negative Roots

Specifically, let µ ∈ Φ− = −Φ+.

Questions
▶ What elements are in A(λ, µ)?
▶ How many elements are in A(λ, µ)?

Note: We specialize to λ = α̃ and µ = −α̃.

Moving on...

Idea: A subword is like a letter in a new alphabet.



Positive Roots → Negative Roots

Specifically, let µ ∈ Φ− = −Φ+.

Questions
▶ What elements are in A(λ, µ)?
▶ How many elements are in A(λ, µ)?

Note: We specialize to λ = α̃ and µ = −α̃.

Moving on...
Idea: A subword is like a letter in a new alphabet.



Forbidden Subwords

Lemma (MRC 2024, Anderson, et al.)
The words

s2s1, s1s2, sr−1sr , and sr sr−1,

and for any 2 ≤ i ≤ r − 1, the words

si−1sisi+1, sisi−1si+1, and si+1sisi−1

are not contained in A(α̃, −α̃).

Lemma (MRC 2024, Anderson, et al.)
Let k ∈ [r − 3]. The product of the four simple reflections sk ,
sk+1, sk+2, and sk+3 in any order is not contained in A(α̃, −α̃).



Basic Allowable Subwords
Let BAS(λ, µ) denote the set of basic allowable subwords
corresponding to the pair λ and µ.



Basic Allowable Subwords
Let BAS(λ, µ) denote the set of basic allowable subwords
corresponding to the pair λ and µ.

Proposition (MRC 2024, Anderson, et al.)
If σ is of the form
(a) sk with 1 ≤ k ≤ r ,
(b) sk+1sk with 2 ≤ k ≤ r − 2,
(c) sksk+1 with 2 ≤ k ≤ r − 2,
(d) sksk+1sk with 2 ≤ k ≤ r − 2, or
(e) sk+2sksk+1 with 2 ≤ k ≤ r − 3,
then σ ∈ A(α̃, −α̃).

Key Insight.
In all cases, σ(α̃ + ρ) + α̃ − ρ = 2α̃ −

∑r
i=1 ciαi with all ci ≤ 2.



Basic Allowable Subwords
Let BAS(λ, µ) denote the set of basic allowable subwords
corresponding to the pair λ and µ.

Theorem (MRC 2024, Anderson, et al.)
The set BAS(α̃, −α̃) of A(α̃, −α̃) consists of
(a) sk with 1 ≤ k ≤ r ,
(b) sk+1sk with 2 ≤ k ≤ r − 2,
(c) sksk+1 with 2 ≤ k ≤ r − 2,
(d) sksk+1sk with 2 ≤ k ≤ r − 2, and
(e) sk+2sksk+1 with 2 ≤ k ≤ r − 3.



BAS Example

Example

in general in Type A6
(a) sk s1, s2, s3, s4, s5, s6
(b) sk+1sk s3s2, s4s3, s5s4
(c) sksk+1 s2s3, s3s4, s4s5
(d) sksk+1sk s2s3s2, s3s4s3, s4s5s4
(e) sk+2sksk+1 s4s2s3, s5s3s4

BAS(α̃, −α̃):
▶ contains s2s3s2 · s5 (using (d) and (a)),
▶ does not contain s1s2s3 (since s1s2 is a forbidden subword),

and
▶ does not contain s5 · s2 · s3 · s4 (as a product of four simple

reflections).
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Moving On

We also have analogous characterizations for when µ is not the
negative highest root, i.e. when
▶ µ = −(α1 + α2 + · · · αj) for 1 ≤ j < r ,
▶ µ = −(αi + αi+1 + . . . + αr ) for 1 < i ≤ r , and
▶ µ = −(αi + αi+1 + · · · + αj) for 1 < i ≤ j < r .

Theorem (Harry, 2023)
Fix 1 ≤ i ≤ j ≤ r and let α̃ be the highest root of slr+1(C). Then,

|A(α̃, αi + αi+1 + · · · + αj)| = Fi · Fr−j+1

where Fn denotes the n-th Fibonacci number.



Enumeration

Proposition (MRC 2024, Anderson, et al.)
Let r ≥ 1 and fix 1 ≤ i ≤ r .

1. If i = 1 or i = r , then |Ar (α̃, −αi)| = Fr+1.
2. If r > 2 and 2 ≤ i ≤ r − 1, then

|Ar (α̃, −αi)| = Fr + Fi−1Fr−i−1 + Fi−2Fr−i .

Lemma (MRC 2024, Anderson, et al.)
The number of subsets of [n] that do not contain a pair of
consecutive numbers is Fn+2.

Proof Sketch (of 1.).
Notice Ar (α̃, −α1) consists of commuting products of r − 1 simple
transpositions.



A q-analog

Recall Lusztig’s definition of the q-analog of Kostant’s partition
function defined (1983), as the polynomial-valued function

℘q(ξ) = c0 + c1q + c2q2 + · · · + ckqk ,

where ci equals the number of ways to write ξ as a sum of exactly
i positive roots.
Then, the q-analog of Kostant’s weight multiplicity formula is

mq(λ, µ) =
∑

σ∈W
(−1)ℓ(σ)℘q(σ(λ + ρ) − µ − ρ).



Future Work
In type Ar , using A(α̃, 0), Harris shows (combinatorially)

mq(α̃, 0) =
∑

1≤i≤r
qi .

In type Ar , using A(α̃, µ) with µ ∈ Φ+, Harry shows that mq(α̃, µ)
is a power of q. Harry conjectured the following:

Conjecture (Harry, 2023)
If α̃ is the highest root and µ = −αi ,j with 1 ≤ i ≤ j ≤ r is a
negative root of the Lie algebra of type Ar , then

mq(α̃, µ) = qr+j−i+1 + qr+j−i − qj−i+1.

We have a proof for when µ = −αi for 1 ≤ i ≤ r .
More to be done!
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