Characterizing Weyl Alternation Sets for Roots of the Type A Lie Algebra

Kimberly P. Hadaway* Iowa State University

AMS Spring Central Sectional

MRC 2024 Algebraic Combinatorics

Portia X. Anderson, Esther Banaian, Melanie J. Ferreri, Owen C. Goff, Pamela E. Harris, Kimberly J. Harry, Nicholas Mayers, Shiyun Wang, and Alexander N. Wilson

Background with Definitions and Examples

Integer Partitions

Recall: An integer partition of a **positive** integer *n* is a tuple of numbers (ordered in weakly decreasing order) whose sum equals *n*.

Example

Let n = 5:

5	(5)	4+1	(4, 1)
3+2	(3,2)	3 + 1 + 1	(3, 1, 1)
2 + 2 + 1	(2, 2, 1)	2 + 1 + 1 + 1	(2, 1, 1, 1)
1 + 1 + 1 + 1 + 1	(1, 1, 1, 1, 1)		

Vector Partition Functions

Let A be an $m \times d$ integral matrix.

Goal: compute the value of the vector partition function

$$\phi_{\mathcal{A}}(\mathbf{b}) = \#\{\mathbf{x} \in \mathbb{N}^d : A\mathbf{x} = \mathbf{b}\}$$

defined for \mathbf{b} in the nonnegative linear span of the columns of A.

▶ φ_A(**b**) counts the number of ways to express the vector **b** as a nonnegative integer linear combination of the columns of matrix *A*.

Remark: If

$$A = \left[\begin{array}{ccccc} 1 & 2 & 3 & \cdots & n \end{array} \right],$$

we recover the integer partition function.

Classical Lie algebra of type A_r

$$\mathfrak{sl}_{r+1}(\mathbb{C}) = \{x \in M_{r+1}(\mathbb{C}) : \operatorname{Tr}(x) = 0\}$$

Definitions

Let e_i be the standard basis element of \mathbb{R}^{r+1} .

$$e_{i} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \Leftarrow i^{th} place$$

Simple roots: $\alpha_i = e_i - e_{i+1}$.

Classical Lie algebra of type A_r

$$\mathfrak{sl}_{r+1}(\mathbb{C}) = \{x \in M_{r+1}(\mathbb{C}) : \mathrm{Tr}(x) = 0\}$$

Definitions

Simple roots: $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$ Positive roots: $\Phi^+ = \Delta \cup \{\alpha_i + \alpha_{i+1} + \dots + \alpha_j \mid 1 \le i \le j \le r\}$ Negative roots: $\Phi^- = -\Phi^+$ Highest root: $\tilde{\alpha} = \alpha_1 + \alpha_2 + \dots + \alpha_r$

Definition

The **Weyl group** is a group generated by reflections, s_i , through hyperplanes that are orthogonal to the simple roots, α_i .

▶ It is isomorphic to the symmetric group on r+1 letters, \mathfrak{S}_{r+1} .

Rules to Compute

$$s_i(\alpha_j) = \begin{cases} -\alpha_i & \text{if } i = j \\ \alpha_i + \alpha_j & \text{if } |i - j| = 1 \\ \alpha_j & \text{if } |i - j| > 1 \end{cases}$$

• Let's calculate
$$s_2s_1(\alpha_1) = s_2(-\alpha_1) = -\alpha_1 - \alpha_2$$
.

Weyl group element σ	$\sigma(\alpha_1)$	$\sigma(\alpha_2)$	$\sigma(\alpha_1 + \alpha_2)$
1	α_1	α_2	$\alpha_1 + \alpha_2$
<i>s</i> ₁	$-\alpha_1$	$\alpha_1 + \alpha_2$	α_2
<i>s</i> ₂	$\alpha_1 + \alpha_2$	$-\alpha_2$	α_1
<i>s</i> ₁ <i>s</i> ₂	α_2	$-\alpha_1 - \alpha_2$	$-\alpha_1$
<i>s</i> ₂ <i>s</i> ₁	$-\alpha_1 - \alpha_2$	α_1	$-\alpha_2$
<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₁	$-\alpha_2$	$-\alpha_1$	$-\alpha_1 - \alpha_2$

Table: Weyl group elements and their action on the roots of $\mathfrak{sl}_3(\mathbb{C})$

Kostant's Partition Function (KPF)

Let $\boldsymbol{\xi}$ be in the weight lattice and

 $\wp(\xi)$

be the number of ways to write $\boldsymbol{\xi}$ as a nonnegative integral sum of positive roots.

Example

Calculate $\wp(\alpha_1 + \alpha_4 + \alpha_5 + \alpha_6) = 4$.

Warning: Do not know of general formulas for the value of KPF.

Kostant's Weight Multiplicity Formula

The multiplicity of a weight μ in the irreducible representation of $\mathfrak{sl}_{r+1}(\mathbb{C})$ with highest weight λ can be computed via:

$$m(\lambda,\mu) = \sum_{\sigma \in W} (-1)^{\ell(\sigma)} \wp(\sigma(\lambda + \rho) - \mu - \rho).$$

$$\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$$
W is the Weyl group
 W is the KPF.

Note: $m(\lambda, \mu)$ is the dimension of the μ weight space.

Example

Type A_6 , let $\mu = \alpha_2 + \alpha_3$, and observe

$$\rho := \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha = 3\alpha_1 + 5\alpha_2 + 6\alpha_3 + 6\alpha_4 + 5\alpha_5 + 3\alpha_6.$$

Calculate $m(\lambda, \mu) = m(\tilde{\alpha}, \alpha_2 + \alpha_3).$

Check the identity and simple reflections:

$$\sigma = 1: \quad \wp(1(\tilde{\alpha} + \rho) - \rho - \mu) = \wp(\alpha_1 + \alpha_4 + \alpha_5 + \alpha_6) = 4 \sigma = s_1: \quad \wp(s_1(\tilde{\alpha} + \rho) - \rho - \mu) = \wp(-\alpha_1 + \alpha_4 + \alpha_5 + \alpha_6) = 0 \sigma = s_2: \quad \wp(s_2(\tilde{\alpha} + \rho) - \rho - \mu) = \wp(\alpha_1 - \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6) = 0 \sigma = s_3: \quad \wp(s_3(\tilde{\alpha} + \rho) - \rho - \mu) = \wp(\alpha_1 - \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6) = 0 \sigma = s_4: \quad \wp(s_4(\tilde{\alpha} + \rho) - \rho - \mu) = \wp(\alpha_1 + \alpha_5 + \alpha_6) = 2 \sigma = s_5: \quad \wp(s_5(\tilde{\alpha} + \rho) - \rho - \mu) = \wp(\alpha_1 + \alpha_4 + \alpha_6) = 1 \sigma = s_6: \quad \wp(s_6(\tilde{\alpha} + \rho) - \rho - \mu) = \wp(\alpha_1 + \alpha_4 + \alpha_5 - \alpha_6) = 0$$

Thus, $m(\tilde{\alpha}, \alpha_2 + \alpha_3) = 4 - 0 - 0 - 0 - 2 - 1 - 0 = 1$.

Question + Motivation

What elements of the Weyl group contribute nontrivially to KWMF?

Definition

For λ, μ integral weights of \mathfrak{g} , the Weyl alternation set is

$$\mathcal{A}(\lambda,\mu) = \{ \sigma \in W : \wp(\sigma(\lambda+\rho) - \mu - \rho) > 0 \}.$$

Example (Cont.)

$$\mathcal{A}(\tilde{\alpha}, \alpha_2 + \alpha_3) = \{1, s_4, s_5\}$$

In A_6 , there are 7! = 5040 elements in W, but only three contribute to $m(\tilde{\alpha}, \alpha_2 + \alpha_3)$.

Weyl Alternation Sets

Definition

For λ,μ integral weights of $\mathfrak{g},$ the Weyl alternation set is

$$\mathcal{A}(\lambda,\mu) = \{\sigma \in W : \wp(\sigma(\lambda+\rho)-\mu-\rho) > 0\}.$$

Some known results:

- 1. In type A_r , if λ is the highest root and $\mu = 0$, then $|\mathcal{A}(\lambda, 0)| = F_{r+1}$ (P.E. Harris, 2012).
- 2. In type A_2 , if λ is a dominant integral weight and μ is in the root lattice, then $\mathcal{A}(\lambda, \mu)$ is known (P.E. Harris, G. Mabie, H. Lencisky, 2017).
- 3. In types B_r , C_r , D_r , $\mathcal{A}(\lambda, 0)$ is known when λ is a sum of all simple roots (P.E. Harris, K. Cheng, E. Insko, 2020).
- 4. In type A_r , if λ is the highest root and μ is a positive root, then $|\mathcal{A}(\lambda,\mu)| = F_i \cdot F_{r-j+1}$ (K. J. Harry, 2023).

$\mathsf{Positive}\ \mathsf{Roots} \to \mathsf{Negative}\ \mathsf{Roots}$

Specifically, let $\mu \in \Phi^- = -\Phi^+$.

Questions

- What elements are in $\mathcal{A}(\lambda, \mu)$?
- How many elements are in $\mathcal{A}(\lambda, \mu)$?

Note: We specialize to $\lambda = \tilde{\alpha}$ and $\mu = -\tilde{\alpha}$.

$\mathsf{Positive}\ \mathsf{Roots} \to \mathsf{Negative}\ \mathsf{Roots}$

Specifically, let $\mu \in \Phi^- = -\Phi^+$.

Questions

- What elements are in $\mathcal{A}(\lambda, \mu)$?
- How many elements are in $\mathcal{A}(\lambda, \mu)$?

Note: We specialize to $\lambda = \tilde{\alpha}$ and $\mu = -\tilde{\alpha}$.

Moving on...

$\mathsf{Positive}\ \mathsf{Roots} \to \mathsf{Negative}\ \mathsf{Roots}$

Specifically, let $\mu \in \Phi^- = -\Phi^+$.

Questions

- What elements are in $\mathcal{A}(\lambda, \mu)$?
- How many elements are in $\mathcal{A}(\lambda, \mu)$?

Note: We specialize to $\lambda = \tilde{\alpha}$ and $\mu = -\tilde{\alpha}$.

Moving on...

Idea: A subword is like a letter in a new alphabet.

Forbidden Subwords

Lemma (MRC 2024, Anderson, et al.) *The words*

 s_2s_1 , s_1s_2 , $s_{r-1}s_r$, and s_rs_{r-1} , and for any $2 \le i \le r-1$, the words $s_{i-1}s_is_{i+1}$, $s_is_{i-1}s_{i+1}$, and $s_{i+1}s_is_{i-1}$

are not contained in $\mathcal{A}(\tilde{\alpha}, -\tilde{\alpha})$.

Lemma (MRC 2024, Anderson, et al.) Let $k \in [r-3]$. The product of the four simple reflections s_k , s_{k+1} , s_{k+2} , and s_{k+3} in any order is not contained in $\mathcal{A}(\tilde{\alpha}, -\tilde{\alpha})$.

Basic Allowable Subwords

Let $BAS(\lambda, \mu)$ denote the set of basic allowable subwords corresponding to the pair λ and μ .

Basic Allowable Subwords

Let $BAS(\lambda, \mu)$ denote the set of basic allowable subwords corresponding to the pair λ and μ .

Proposition (MRC 2024, Anderson, et al.)

If σ is of the form

(a)
$$s_k$$
 with $1 \le k \le r$,
(b) $s_{k+1}s_k$ with $2 \le k \le r-2$,
(c) s_ks_{k+1} with $2 \le k \le r-2$,
(d) $s_ks_{k+1}s_k$ with $2 \le k \le r-2$, or
(e) $s_{k+2}s_ks_{k+1}$ with $2 \le k \le r-3$,
then $\sigma \in \mathcal{A}(\tilde{\alpha}, -\tilde{\alpha})$.

Key Insight.

In all cases, $\sigma(\tilde{\alpha} + \rho) + \tilde{\alpha} - \rho = 2\tilde{\alpha} - \sum_{i=1}^{r} c_i \alpha_i$ with all $c_i \leq 2$. \Box

Basic Allowable Subwords

Let $BAS(\lambda, \mu)$ denote the set of basic allowable subwords corresponding to the pair λ and μ .

Theorem (MRC 2024, Anderson, et al.) The set BAS($\tilde{\alpha}, -\tilde{\alpha}$) of $\mathcal{A}(\tilde{\alpha}, -\tilde{\alpha})$ consists of (a) s_k with $1 \le k \le r$, (b) $s_{k+1}s_k$ with $2 \le k \le r-2$, (c) s_ks_{k+1} with $2 \le k \le r-2$, (d) $s_ks_{k+1}s_k$ with $2 \le k \le r-2$, and (e) $s_{k+2}s_ks_{k+1}$ with $2 \le k \le r-3$.

Example

	in general	in Type A ₆
(a)	s _k	$s_1, s_2, s_3, s_4, s_5, s_6$
(b)	$s_{k+1}s_k$	<i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₄
(c)	$s_k s_{k+1}$	<i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₃ <i>s</i> ₄ , <i>s</i> ₄ <i>s</i> ₅
(d)	$s_k s_{k+1} s_k$	<i>s</i> ₂ <i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₃ <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₄ <i>s</i> ₅ <i>s</i> ₄
(e)	$ s_{k+2}s_ks_{k+1}$	<i>s</i> ₄ <i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₃ <i>s</i> ₄

Example

	in general	in Type A ₆
(a)	s _k	$s_1, s_2, s_3, s_4, s_5, s_6$
(b)	$s_{k+1}s_k$	<i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₄
(c)	$s_k s_{k+1}$	<i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₃ <i>s</i> ₄ , <i>s</i> ₄ <i>s</i> ₅
(d)	$s_k s_{k+1} s_k$	<i>s</i> ₂ <i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₃ <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₄ <i>s</i> ₅ <i>s</i> ₄
(e)	$s_{k+2}s_ks_{k+1}$	<i>s</i> ₄ <i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₃ <i>s</i> ₄

 $BAS(\tilde{\alpha}, -\tilde{\alpha})$:

• contains $s_2s_3s_2 \cdot s_5$ (using (d) and (a)),

Example

	in general	in Type A ₆
(a)	s _k	$s_1, s_2, s_3, s_4, s_5, s_6$
(b)	$s_{k+1}s_k$	<i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₄
(c)	$s_k s_{k+1}$	<i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₃ <i>s</i> ₄ , <i>s</i> ₄ <i>s</i> ₅
(d)	$s_k s_{k+1} s_k$	<i>s</i> ₂ <i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₃ <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₄ <i>s</i> ₅ <i>s</i> ₄
(e)	$s_{k+2}s_ks_{k+1}$	<i>s</i> ₄ <i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₃ <i>s</i> ₄

 $BAS(\tilde{\alpha}, -\tilde{\alpha})$:

- contains $s_2s_3s_2 \cdot s_5$ (using (d) and (a)),
- does not contain $s_1s_2s_3$ (since s_1s_2 is a forbidden subword), and

Example

	in general	in Type A ₆
(a)	s _k	$s_1, s_2, s_3, s_4, s_5, s_6$
(b)	$s_{k+1}s_k$	<i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₄
(c)	$s_k s_{k+1}$	<i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₃ <i>s</i> ₄ , <i>s</i> ₄ <i>s</i> ₅
(d)	$s_k s_{k+1} s_k$	<i>s</i> ₂ <i>s</i> ₃ <i>s</i> ₂ , <i>s</i> ₃ <i>s</i> ₄ <i>s</i> ₃ , <i>s</i> ₄ <i>s</i> ₅ <i>s</i> ₄
(e)	$s_{k+2}s_ks_{k+1}$	<i>s</i> ₄ <i>s</i> ₂ <i>s</i> ₃ , <i>s</i> ₅ <i>s</i> ₃ <i>s</i> ₄

 $BAS(\tilde{\alpha}, -\tilde{\alpha})$:

- contains $s_2s_3s_2 \cdot s_5$ (using (d) and (a)),
- does not contain s₁s₂s₃ (since s₁s₂ is a forbidden subword), and
- ► does not contain s₅ · s₂ · s₃ · s₄ (as a product of four simple reflections).

Moving On

We also have analogous characterizations for when μ is not the negative highest root, i.e. when

$$\mu = -(\alpha_1 + \alpha_2 + \cdots + \alpha_j) \text{ for } 1 \le j < r,$$

$$\mu = -(\alpha_i + \alpha_{i+1} + \cdots + \alpha_r) \text{ for } 1 < i \le r, \text{ and}$$

$$\mu = -(\alpha_i + \alpha_{i+1} + \cdots + \alpha_j) \text{ for } 1 < i \le j < r.$$

Theorem (Harry, 2023)

Fix $1 \leq i \leq j \leq r$ and let $\tilde{\alpha}$ be the highest root of $\mathfrak{sl}_{r+1}(\mathbb{C})$. Then,

$$|\mathcal{A}(\tilde{\alpha}, \alpha_i + \alpha_{i+1} + \dots + \alpha_j)| = F_i \cdot F_{r-j+1}$$

where F_n denotes the n-th Fibonacci number.

Enumeration

Proposition (MRC 2024, Anderson, et al.) Let $r \ge 1$ and fix $1 \le i \le r$. 1. If i = 1 or i = r, then $|\mathcal{A}_r(\tilde{\alpha}, -\alpha_i)| = F_{r+1}$. 2. If r > 2 and $2 \le i \le r - 1$, then $|\mathcal{A}_r(\tilde{\alpha}, -\alpha_i)| = F_r + F_{i-1}F_{r-i-1} + F_{i-2}F_{r-i}$.

Lemma (MRC 2024, Anderson, et al.)

The number of subsets of [n] that do not contain a pair of consecutive numbers is F_{n+2} .

Proof Sketch (of 1.).

Notice $A_r(\tilde{\alpha}, -\alpha_1)$ consists of commuting products of r-1 simple transpositions.

A q-analog

Recall Lusztig's definition of the q-analog of Kostant's partition function defined (1983), as the polynomial-valued function

$$\wp_q(\xi) = c_0 + c_1q + c_2q^2 + \cdots + c_kq^k,$$

where c_i equals the number of ways to write ξ as a sum of exactly *i* positive roots.

Then, the q-analog of Kostant's weight multiplicity formula is

$$m_q(\lambda,\mu) = \sum_{\sigma \in W} (-1)^{\ell(\sigma)} \wp_q(\sigma(\lambda+
ho) - \mu -
ho).$$

Future Work

In type A_r , using $\mathcal{A}(\tilde{\alpha}, 0)$, Harris shows (combinatorially)

$$m_q(\tilde{\alpha},0)=\sum_{1\leq i\leq r}q^i.$$

In type A_r , using $\mathcal{A}(\tilde{\alpha}, \mu)$ with $\mu \in \Phi^+$, Harry shows that $m_q(\tilde{\alpha}, \mu)$ is a power of q. Harry conjectured the following:

Conjecture (Harry, 2023)

If $\tilde{\alpha}$ is the highest root and $\mu = -\alpha_{i,j}$ with $1 \le i \le j \le r$ is a negative root of the Lie algebra of type A_r , then

$$m_q(\tilde{\alpha},\mu) = q^{r+j-i+1} + q^{r+j-i} - q^{j-i+1}$$

We have a proof for when $\mu = -\alpha_i$ for $1 \le i \le r$. More to be done!

Thank you!

arXiv:2412.16820 Contact Email: kph3@iastate.edu NSF Grant DMS-1916439