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Motivating Question

The following sequence (OEIS: A003121)

1, 1, 1, 2, 12, 286, 33592, 23178480, . . .

is known to count

shifted standard Young tableaux of staircase shape,

longest chains in the Tamari lattice,

(Davis-Sagan) the normalized volume of a certain pattern-avoiding
variant of the Birkhoff polytope

Question(Davis-Sagan)

Is this pattern-avoiding Birkhoff polytope unimodularly equivalent to an
order polytope?

Theorem(BCGP)

Yes+
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c-singletons

We will work in Sn+1 throughout, and we will fix a Coxeter element
c = a1 · · · an (i.e. {a1, . . . , an} = {s1, . . . , sn}).

Let c∞ be the infinite word a1 . . . an|a1 . . . an| · · · .
Given w ∈ Sn+1, let sortc(w) be the reduced word of w which is
lexicographically first as a subword of c∞.

Example: c = s1s3s2, c∞ = s1s3s2|s1s3s2|s1s3s2 · · · .
If w = s1s2s1 = s2s1s2, sortc(w) = s1s2s1.

Definition/Theorem (Hohlweg-Lange-Thomas)

w ∈ Sn+1 is a c-singleton if and only if w has a reduced word which is a
prefix of a reduced word in the commutation class of sortc(w0).
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Definition/Theorem (Hohlweg-Lange-Thomas)

w ∈ Sn+1 is a c-singleton if and only if w has a reduced word which is a
prefix of a reduced word in the commutation class of sortc(w0).

Example If c = s1s3s2, sortc(w0) = s1s3s2s1s3s2, and w = s2s1s2 is not a
c-singleton.
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c-singletons

We will work in Sn+1 throughout, and we will fix a Coxeter element
c = a1 · · · an (i.e. {a1, . . . , an} = {s1, . . . , sn}).

Let c∞ be the infinite word a1 . . . an|a1 . . . an| · · · .
Given w ∈ Sn+1, let sortc(w) be the reduced word of w which is
lexicographically first as a subword of c∞.

Example: c = s1s3s2, c∞ = s1s3s2|s1s3s2|s1s3s2 · · · .
If w = s1s2s1 = s2s1s2, sortc(w) = s1s2s1.

Definition/Theorem (Hohlweg-Lange-Thomas)

w ∈ Sn+1 is a c-singleton if and only if w has a reduced word which is a
prefix of a reduced word in the commutation class of sortc(w0).

c-singletons are a subset of c-sortable elements, which are the elements of
Reading’s c-Cambrian lattices. The c-singletons also form a distributive
sublattice of weak order.
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Pattern-avoidance classification

Given c , for any i ∈ [2, n], let i ∈ [2, n] if si appears after si−1 in c and

otherwise i ∈ [2, n].
Example: Let c = s4s2s5s1s3 ∈ S6. Then, [2, 5] = {3, 5} and

[2, 5] = {2, 4}.

Say that w avoids pattern 132 if w does not contain the pattern 132 with
“2” lower-barred - that is, we do not have w = ...x ...y ...z .. with
x < z < y and z ∈ [2, n].

Proposition[Reading]

A permutation w is a c-singleton if w a avoids 132, 312, 231, and 213.

Example: If c = s1s3s2, [2, 3] = {2} and [2, 3] = {3}. We observe 4213 is

c-singleton while 3241 is not.
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c-Birkhoff

Given w ∈ Sn+1, let Xw be its permutation matrix.
The Birkhoff Polytope is the convex hull of all Xw .

Definition

We define Birk(c) to be the convex hull of {Xw : w is a c-singleton}.

Example: If c = s1s3s2, Birk(c) is the convex hull of the following 9
points in R16

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


Id s1 s3 s1s3 s1s3s2

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


s1s3s2s1 s1s3s2s3 s1s3s2s1s3 s1s3s2s1s3s2
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Heaps

Definition

Let [u] = u1 · · · u` be a reduced word. The heap from [u] is the the poset
on {1, . . . , `} which is the transitive closure of relations x ≺ y whenever
x < y and ux and uy do not commute.

Example Given w = s1s3s2s1s3s2 = u1u2u3u4u5u6, we draw (1) Hasse
diagram of the heap and (2) the same diagram but with ui in place of i .

1 2

3

4 5

6

s1 s3

s2

s1 s3

s2
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Order ideals and linear extensions of a heap

A linear extension of a poset is a total order on the set which respects the
partial order. For example, there are 4 linear extensions of the poset below.

Proposition [Stembridge]

Linear extensions of a Heap([u]) are in bijection with the commutation
class of [u].

A order ideal of a poset (P,�) is a set I ⊆ P such that if x ∈ I and
y � x , y ∈ I .

Rephrasing (Hohlweg-Lange-Thomas)

Order ideals of Heap(sortc(w0)) are in bijection with c-singletons.

1 2

3

4 5

6

s1 s3

s2

s1 s3

s2
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Order Polytopes

Order Polytope [Stanley]

Given a poset P, the order polytope of P, O(P), lives in RP and is the
convex hull of indicator vectors of the order ideals of P.

P

1 2

3

4 5

6

Vertices of O(P)

1 (0, 0, 0, 0, 0, 0)

2 (1, 0, 0, 0, 0, 0)

3 (0, 1, 0, 0, 0, 0)

4 (1, 1, 0, 0, 0, 0)

5 (1, 1, 1, 0, 0, 0)

6 etc (4 more)

Theorem[Stanley]

The normalized volume of O(P) is equal to the number of linear
extensions of P.
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Return to Motivation

Let c = s1s2 · · · sn, so [2, n] = [2, n], [2, n] = ∅.
The c-singletons are 312 and 132 avoiding permutations. There are
2n.
The c-Cambrian lattice is the Tamari lattice.

The heap of sortc(w0) has the following form:

s1

s2

s3

s4

s1

s2

s3s1

s2

s1

The following sequences are equal:

number of shifted standard Young tableaux of staircase shape
number of longest chains in the Tamari lattice
normalized volume of Birk(c) (Davis-Sagan)

Question (Davis-Sagan)

For c = s1s2 · · · sn, is Birk(c) unimodularly equivalent to an order
polytope?
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Main Result: Yes+

Theorem (BCGP)

There is a unimodular equivalence between Birk(c) and
O(Heap(sortc(w0))).

When c = s1s2 · · · sn, this answers yes to Davis and Sagan’s question.

Proof ideas:

1 Notice Birk(c) is in (n + 1)2-space while O(Heap(sortc(w0)))is in(n+1
2

)
-space.

2 We use Reading’s pattern avoidance criteria to describe a projection
of Birk(c).

3 Then we the existence of a unimodular transformation from the
projection of Birk(c) to O(Heap(sortc(w0))).
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Zero Relations

To give these projections, we study relations on the affine space spanned
by {Xw : w is a c-singleton}: aff(c).
For example, let c = [1432657]. The following entries are 0 for every point
in aff(c).

3 4 6

X X X

X X X

X

X

X

X X X

2 5 7

Banaian c-singleton Birkhoff polytopes and order polytopes of heaps AMS Central 11 / 15



Summing Relations

For every point in aff([1432657]), the sum of the entries in like-suited
boxes is the same.

0 1 −1 −2 2 5 3 4

♣ ♥ X X ♠ X ♣ ♥
♣ ♥ X X ♠ X ♣ ♥
♣ ♥ ♠ X ♠ ♠ ♣ ♥

X

X

X X X
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Tamari Case

If c = [123 . . . n], then the relations are simpler. The zero relations are:

X X

X X X X

X X X X X X

Corollary

Given a 132 and 312 avoiding permutation w , for any 1 ≤ m ≤ n + 1, the
values w(1),w(2), . . . ,w(m) are all distinct modulo m.

(This is equivalent to zero and summing relations for c = [123 . . . n])
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Future Work

Given any reduced word and heap H([u]), one can define Birk([u]) to be
the convex hull of permutation matrices arising from linear extensions of u.

Question

When is O(H([u])) unimodularly
equivalent to Birk([u])?

The answer will depend on [u]
and not just the correspond-
ing element of Sn+1. For
[u] = [2123243212], Birk([u]) is
9-dimensional while O(H([u])) is
10-dimensional.
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Thank you

Thank you for listening!
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