c-singleton Birkhoff polytopes and order polytopes of heaps

Esther Banaian (UC Riverside) j. with Sunita Chepuri, Emily Gunawan, and Jianping Pan

2025 Spring Central Sectional Meeting March 30, 2025

Banaian

c-singleton Birkhoff polytopes and order polytopes of heaps

AMS Central 1 / 15

The following sequence (OEIS: A003121)

```
1, 1, 1, 2, 12, 286, 33592, 23178480, \ldots
```

is known to count

- shifted standard Young tableaux of staircase shape,
- longest chains in the Tamari lattice,

The following sequence (OEIS: A003121)

 $1, 1, 1, 2, 12, 286, 33592, 23178480, \ldots$

is known to count

- shifted standard Young tableaux of staircase shape,
- longest chains in the Tamari lattice,
- (Davis-Sagan) the normalized volume of a certain pattern-avoiding variant of the Birkhoff polytope

The following sequence (OEIS: A003121)

 $1, 1, 1, 2, 12, 286, 33592, 23178480, \ldots$

is known to count

- shifted standard Young tableaux of staircase shape,
- longest chains in the Tamari lattice,
- (Davis-Sagan) the normalized volume of a certain pattern-avoiding variant of the Birkhoff polytope

Question(Davis-Sagan)

Is this pattern-avoiding Birkhoff polytope unimodularly equivalent to an order polytope?

The following sequence (OEIS: A003121)

 $1, 1, 1, 2, 12, 286, 33592, 23178480, \ldots$

is known to count

- shifted standard Young tableaux of staircase shape,
- longest chains in the Tamari lattice,
- (Davis-Sagan) the normalized volume of a certain pattern-avoiding variant of the Birkhoff polytope

Question(Davis-Sagan)

Is this pattern-avoiding Birkhoff polytope unimodularly equivalent to an order polytope?

Theorem(BCGP)

Yes+

Banaian

We will work in S_{n+1} throughout, and we will fix a *Coxeter element* $c = a_1 \cdots a_n$ (i.e. $\{a_1, \ldots, a_n\} = \{s_1, \ldots, s_n\}$).

We will work in S_{n+1} throughout, and we will fix a *Coxeter element* $c = a_1 \cdots a_n$ (i.e. $\{a_1, \ldots, a_n\} = \{s_1, \ldots, s_n\}$).

• Let c^{∞} be the infinite word $a_1 \dots a_n | a_1 \dots a_n | \cdots$.

• Given $w \in S_{n+1}$, let sort_c(w) be the reduced word of w which is lexicographically first as a subword of c^{∞} .

We will work in S_{n+1} throughout, and we will fix a *Coxeter element* $c = a_1 \cdots a_n$ (i.e. $\{a_1, \ldots, a_n\} = \{s_1, \ldots, s_n\}$).

- Let c^{∞} be the infinite word $a_1 \dots a_n | a_1 \dots a_n | \cdots$.
- Given $w \in S_{n+1}$, let sort_c(w) be the reduced word of w which is lexicographically first as a subword of c^{∞} .
- **Example:** $c = s_1 s_3 s_2$, $c^{\infty} = s_1 s_3 s_2 |s_1 s_3 s_2| s_1 s_3 s_2 \cdots$. If $w = s_1 s_2 s_1 = s_2 s_1 s_2$, sort_c(w) = $s_1 s_2 s_1$.

c-singletons

We will work in S_{n+1} throughout, and we will fix a *Coxeter element* $c = a_1 \cdots a_n$ (i.e. $\{a_1, \ldots, a_n\} = \{s_1, \ldots, s_n\}$).

- Let c^{∞} be the infinite word $a_1 \dots a_n | a_1 \dots a_n | \cdots$.
- Given w ∈ S_{n+1}, let sort_c(w) be the reduced word of w which is lexicographically first as a subword of c[∞].
- **Example:** $c = s_1 s_3 s_2$, $c^{\infty} = s_1 s_3 s_2 | s_1 s_3 s_2 | s_1 s_3 s_2 \cdots$. If $w = s_1 s_2 s_1 = s_2 s_1 s_2$, sort_c $(w) = s_1 s_2 s_1$.

Definition/Theorem (Hohlweg-Lange-Thomas)

 $w \in S_{n+1}$ is a *c*-singleton if and only if w has a reduced word which is a prefix of a reduced word in the commutation class of sort_c(w_0).

Example If $c = s_1 s_3 s_2$, sort_c $(w_0) = s_1 s_3 s_2 s_1 s_3 s_2$, and $w = s_2 s_1 s_2$ is not a *c*-singleton.

c-singletons

We will work in S_{n+1} throughout, and we will fix a *Coxeter element* $c = a_1 \cdots a_n$ (i.e. $\{a_1, \ldots, a_n\} = \{s_1, \ldots, s_n\}$).

- Let c^{∞} be the infinite word $a_1 \dots a_n | a_1 \dots a_n | \cdots$.
- Given w ∈ S_{n+1}, let sort_c(w) be the reduced word of w which is lexicographically first as a subword of c[∞].
- **Example:** $c = s_1 s_3 s_2$, $c^{\infty} = s_1 s_3 s_2 |s_1 s_3 s_2| s_1 s_3 s_2 \cdots$. If $w = s_1 s_2 s_1 = s_2 s_1 s_2$, sort_c $(w) = s_1 s_2 s_1$.

Definition/Theorem (Hohlweg-Lange-Thomas)

 $w \in S_{n+1}$ is a *c*-singleton if and only if w has a reduced word which is a prefix of a reduced word in the commutation class of sort_c(w_0).

c-singletons are a subset of *c*-sortable elements, which are the elements of Reading's *c*-Cambrian lattices. The *c*-singletons also form a distributive sublattice of weak order.

Given c, for any $i \in [2, n]$, let $i \in [\underline{2, n}]$ if s_i appears after s_{i-1} in c and otherwise $i \in \overline{[2, n]}$. **Example:** Let $c = s_4 s_2 s_5 s_1 s_3 \in S_6$. Then, $\underline{[2, 5]} = \{3, 5\}$ and $\overline{[2, 5]} = \{2, 4\}$. Given c, for any $i \in [2, n]$, let $i \in [2, n]$ if s_i appears after s_{i-1} in c and otherwise $i \in \overline{[2, n]}$. **Example:** Let $c = s_4 s_2 s_5 s_1 s_3 \in S_6$. Then, $[2, 5] = \{3, 5\}$ and $\overline{[2, 5]} = \{2, 4\}$. Say that w avoids pattern 132 if w does not contain the pattern 132 with "2" lower-barred - that is, we do not have w = ...x..y...z.. with x < z < y and $z \in [2, n]$. Given c, for any $i \in [2, n]$, let $i \in [2, n]$ if s_i appears after s_{i-1} in c and otherwise $i \in \overline{[2, n]}$. **Example:** Let $c = s_4 s_2 s_5 s_1 s_3 \in S_6$. Then, $[2, 5] = \{3, 5\}$ and $\overline{[2, 5]} = \{2, 4\}$. Say that w avoids pattern 132 if w does not contain the pattern 132 with "2" lower-barred - that is, we do not have w = ...x..y...z.. with x < z < y and $z \in [2, n]$.

Proposition[Reading]

A permutation w is a c-singleton if w a avoids $132, 312, \overline{2}31$, and $\overline{2}13$.

Given c, for any $i \in [2, n]$, let $i \in [2, n]$ if s_i appears after s_{i-1} in c and otherwise $i \in \overline{[2, n]}$. **Example:** Let $c = s_4 s_2 s_5 s_1 s_3 \in S_6$. Then, $[2, 5] = \{3, 5\}$ and $\overline{[2, 5]} = \{2, 4\}$. Say that w avoids pattern 132 if w does not contain the pattern 132 with "2" lower-barred - that is, we do not have w = ...x..y...z.. with x < z < y and $z \in [2, n]$.

Proposition[Reading]

A permutation w is a c-singleton if w a avoids $132, 312, \overline{2}31$, and $\overline{2}13$.

Example: If $c = s_1 s_3 s_2$, $[2,3] = \{2\}$ and $\overline{[2,3]} = \{3\}$. We observe 4213 is *c*-singleton while $\overline{3241}$ is not.

c-Birkhoff

Given $w \in S_{n+1}$, let X_w be its permutation matrix. The *Birkhoff Polytope* is the convex hull of all X_w .

c-Birkhoff

Given $w \in S_{n+1}$, let X_w be its permutation matrix. The *Birkhoff Polytope* is the convex hull of all X_w .

Definition

We define Birk(c) to be the convex hull of $\{X_w : w \text{ is a } c\text{-singleton}\}$.

c-Birkhoff

Given $w \in S_{n+1}$, let X_w be its permutation matrix. The *Birkhoff Polytope* is the convex hull of all X_w .

Definition

We define Birk(c) to be the convex hull of $\{X_w : w \text{ is a } c\text{-singleton}\}$.

Example: If $c = s_1 s_3 s_2$, Birk(c) is the convex hull of the following 9 points in \mathbb{R}^{16}

$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
ld	<i>s</i> 1	<i>s</i> 3	<i>s</i> ₁ <i>s</i> ₃	<i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₂
$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$	
<i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₃	<i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₁ <i>s</i> ₃	<i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₂	

Definition

Let $[u] = u_1 \cdots u_\ell$ be a reduced word. The *heap* from [u] is the the poset on $\{1, \ldots, \ell\}$ which is the transitive closure of relations $x \prec y$ whenever x < y and u_x and u_y do not commute.

Example Given $w = s_1 s_3 s_2 s_1 s_3 s_2 = u_1 u_2 u_3 u_4 u_5 u_6$, we draw (1) Hasse diagram of the heap and (2) the same diagram but with u_i in place of *i*.

Order ideals and linear extensions of a heap

A *linear extension* of a poset is a total order on the set which respects the partial order. For example, there are 4 linear extensions of the poset below.

Proposition [Stembridge]

Linear extensions of a Heap([u]) are in bijection with the commutation class of [u].

Order ideals and linear extensions of a heap

A *linear extension* of a poset is a total order on the set which respects the partial order. For example, there are 4 linear extensions of the poset below.

Proposition [Stembridge]

Linear extensions of a Heap([u]) are in bijection with the commutation class of [u].

A order ideal of a poset (P, \preceq) is a set $I \subseteq P$ such that if $x \in I$ and $y \preceq x, y \in I$.

Rephrasing (Hohlweg-Lange-Thomas)

Order ideals of $\text{Heap}(\text{sort}_c(w_0))$ are in bijection with *c*-singletons.

Order Polytopes

Order Polytope [Stanley]

Given a poset P, the order polytope of P, $\mathcal{O}(P)$, lives in \mathbb{R}^P and is the convex hull of indicator vectors of the order ideals of P.

Order Polytopes

Order Polytope [Stanley]

Given a poset P, the order polytope of P, $\mathcal{O}(P)$, lives in \mathbb{R}^P and is the convex hull of indicator vectors of the order ideals of P.

- Vertices of $\mathcal{O}(P)$
 - (0, 0, 0, 0, 0, 0)
 - (1,0,0,0,0,0)
 - (0, 1, 0, 0, 0, 0)
 - (1, 1, 0, 0, 0, 0)
 - (1, 1, 1, 0, 0, 0)
 - etc (4 more)

Order Polytopes

Order Polytope [Stanley]

Given a poset P, the order polytope of P, $\mathcal{O}(P)$, lives in \mathbb{R}^P and is the convex hull of indicator vectors of the order ideals of P.

Theorem[Stanley]

The normalized volume of $\mathcal{O}(P)$ is equal to the number of linear extensions of P.

Banaian

c-singleton Birkhoff polytopes and order polytopes of heaps

AMS Central 8 / 15

Return to Motivation

Let $c = s_1 s_2 \cdots s_n$, so [2, n] = [2, n], $\overline{[2, n]} = \emptyset$.

- The *c*-singletons are 312 and 132 avoiding permutations. There are 2^n .
- The *c*-Cambrian lattice is the Tamari lattice.

The heap of $sort_c(w_0)$ has the following form:

Return to Motivation

Let
$$c = s_1 s_2 \cdots s_n$$
, so $\underline{[2, n]} = [2, n]$, $\overline{[2, n]} = \emptyset$.

- The *c*-singletons are 312 and 132 avoiding permutations. There are 2^n .
- The c-Cambrian lattice is the Tamari lattice.
- The following sequences are equal:
 - number of shifted standard Young tableaux of staircase shape
 - number of longest chains in the Tamari lattice
 - normalized volume of Birk(c) (Davis-Sagan)

Question (Davis-Sagan)

For $c = s_1 s_2 \cdots s_n$, is Birk(c) unimodularly equivalent to an order polytope?

Theorem (BCGP)

There is a unimodular equivalence between Birk(c) and $\mathcal{O}(Heap(sort_c(w_0)))$.

When $c = s_1 s_2 \cdots s_n$, this answers **yes** to Davis and Sagan's question.

Theorem (BCGP)

There is a unimodular equivalence between Birk(c) and $O(Heap(sort_c(w_0)))$.

When $c = s_1 s_2 \cdots s_n$, this answers **yes** to Davis and Sagan's question. Proof ideas:

• Notice Birk(c) is in $(n+1)^2$ -space while $\mathcal{O}(\text{Heap}(\text{sort}_c(w_0)))$ is in $\binom{n+1}{2}$ -space.

We use Reading's pattern avoidance criteria to describe a projection of Birk(c).

Theorem (BCGP)

There is a unimodular equivalence between Birk(c) and $O(Heap(sort_c(w_0)))$.

When $c = s_1 s_2 \cdots s_n$, this answers **yes** to Davis and Sagan's question. Proof ideas:

- Notice Birk(c) is in $(n+1)^2$ -space while $\mathcal{O}(\text{Heap}(\text{sort}_c(w_0)))$ is in $\binom{n+1}{2}$ -space.
- We use Reading's pattern avoidance criteria to describe a projection of Birk(c).
- Then we the existence of a unimodular transformation from the projection of Birk(c) to O(Heap(sort_c(w₀))).

Zero Relations

To give these projections, we study relations on the affine space spanned by $\{X_w : w \text{ is a } c\text{-singleton}\}$: aff(c).

For example, let c = [1432657]. The following entries are 0 for every point in aff(c).

For every point in aff([1432657]), the sum of the entries in like-suited boxes is the same.

Tamari Case

If c = [123...n], then the relations are simpler. The zero relations are:

Corollary

Given a 132 and 312 avoiding permutation w, for any $1 \le m \le n+1$, the values $w(1), w(2), \ldots, w(m)$ are all distinct modulo m.

(This is equivalent to zero and summing relations for c = [123...n])

Banaian

Future Work

Given any reduced word and heap H([u]), one can define Birk([u]) to be the convex hull of permutation matrices arising from linear extensions of u.

Question

When is $\mathcal{O}(H([u]))$ unimodularly equivalent to Birk([u])?

The answer will depend on [u]and not just the corresponding element of S_{n+1} . For [u] = [2123243212], Birk([u]) is 9-dimensional while $\mathcal{O}(H([u]))$ is 10-dimensional.

Thank you for listening!