Supersolvable convex geometries and the flag vectors associated to Hopf monoids

Yichen Ma

Cornell University

ym476@cornell.edu

Mar 2025

A Hopf monoid (Aguiar-Mahajan) H consists of:

- One vector space H[I] for each finite set I.
- Two linear maps

 $\mu_{\mathcal{S},\mathcal{T}}:\mathrm{H}[\mathcal{S}]\otimes\mathrm{H}[\mathcal{T}]\to\mathrm{H}[\mathcal{I}] \quad \text{and} \quad \Delta_{\mathcal{S},\mathcal{T}}:\mathrm{H}[\mathcal{I}]\to\mathrm{H}[\mathcal{S}]\otimes\mathrm{H}[\mathcal{T}]$

for each finite set I and each decomposition $I = S \sqcup T$. These are subject to certain simple axioms. We assume that $H[\emptyset] = \Bbbk$. A character ψ on a Hopf monoid ${\rm H}$ is a collection of linear maps

 $\psi_{I}: \mathrm{H}[I] \to \Bbbk$

for each finite set I subject to certain simple axioms. The set of all characters on H form a group. Denote the group operation *.

Define another character $\overline{\psi}$ by

$$\overline{\psi}_I(x) = (-1)^{|I|} \psi_I(x).$$

Definition

 ψ is **odd** if ψ and $\overline{\psi}$ are inverse in the character group.

Flag f-vectors

Theorem (Aguiar-Bergeron-Sottile, Aguiar-Mahajan)

For any Hopf monoid vector species H with a character $\psi : H \to \Bbbk E$, there exists a unique morphism of Hopf monoids $f : H \to \Bbbk \Sigma^*$ (the Hopf monoid of compositions) such that the following diagram commutes.

$$f_I^{\psi}(x) = \sum_{F \models I} \psi_F \Delta_F(x) \mathbb{M}_F.$$
 Denote $f_F^{\psi}(x) = \psi_F \Delta_F(x).$

The *flag f-vector* associated with ψ is the vector $(f^{\psi}_{\alpha}(\mathbf{x}))_{\alpha}$, $\alpha \models |I|$,

$$f^{\psi}_{lpha}(x) = \sum_{F: \, {
m type}(F) = lpha} f^{\psi}_F(x).$$

Flag *h*-vector, *ab* and *cd*-indices associated to a character

The flag *h*-vector for ψ is determined by the following relation.

$$h^{\psi}_{\alpha}(x) = \sum_{\alpha' \leq \alpha} (-1)^{l(\alpha) - l(\alpha')} f^{\psi}_{\alpha'}(x).$$

For $\alpha = (\alpha_1, ..., \alpha_k) \vDash n$, let $m(a, b)_{\alpha}$ denote the *ab*-monomial of degree n-1 with *b*'s on position $\alpha_1, \alpha_1 + \alpha_2, ..., \alpha_1 + ... + \alpha_{k-1}$. Example: If $\alpha = (2, 1, 1, 5, 3) \vDash 12$ then $m(a, b)_{\alpha} = abbbaaaabaa$.

The *ab-index* associated with ψ of $x \in H[I]$ is

$$\Psi^{\psi}_{x}(a,b) = \sum_{lpha Dash |I|} h^{\psi}_{lpha}(x) m(a,b)_{lpha}.$$

Let c = a + b, d = ab + ba. The *cd-index*, if it exists, is the polynomial $\Phi(c, d)$ such that $\Phi(c, d) = \Psi(a, b)$.

Theorem (Aguiar-Bergeron-Sottile)

If the character ψ is odd, then for any $x \in H[I]$ the vector $(f^{\psi}_{\alpha}(x))_{\alpha}$ satisfies the Bayer-Billera (or generalized Dehn-Sommerville) relations.

Proposition (Fine, Bayer - Klapper)

The cd-index of x exists if and only if the vector $(f^{\psi}_{\alpha}(x))_{\alpha}$ satisfies the Bayer-Billera relations.

Convex Geometries

Let 2^{I} denote the set of subsets of a finite set I.

Definition

A closure operator on I is a map $c: 2^{I} \rightarrow 2^{I}$ such that for all $A, B \in 2^{I}$,

- $A \subseteq c(A)$,
- if $A \subseteq c(B)$, then $c(A) \subseteq c(B)$.

A subset $K \subseteq I$ is **closed** if c(K) = K.

A **convex geometry** with ground set I is a closure operator g on I that satisfies the **antiexchange axiom**:

• if $a \in g(A \cup \{b\})$, $a \notin g(A)$, and $a \neq b$, then $b \notin g(A \cup \{a\})$. A closed set of g is said to be **convex**.

We assume from now on that all convex geometries g are **loopless**: $g(\emptyset) = \emptyset$.

Convex Geometries

From the cover of Matroid Applications, edited by Neil White.

Consider $I = S \sqcup T$. Let c_1, c_2 be two convex geometries on ground set S, T, respectively, the **direct sum** $c_1 \oplus c_2$ is a convex geometry defined on I with

$$(c_1\oplus c_2)(A)=c_1(A\cap S)\cup c_2(A\cap T).$$

Let *c* be a convex geometry on ground set *I*, then the **restriction** of *c* on *S*, namely $c|_S$, and the **contraction** of *c* by *S*, namely $c/_S$, are convex geometries on ground sets *S*, *T* respectively, defined as follows.

$$(c|_S)(B) = c(B) \cap S, \ (c/_S)(C) = c(S \cup C) \cap T.$$

Let CG[I] be the vector space spanned by all convex geometries on I. Let

•
$$\mu_{S,T}(c,d) = c \oplus d$$
,
• $\Delta_{S,T}(e) = \begin{cases} e|_S \otimes e|_S & \text{if } S \text{ is convex,} \\ 0 & \text{otherwise.} \end{cases}$

Then CG is a Hopf monoid.

Canonical characters of convex geometries

Set the canonical character $\eta_I(g) = 1$. Let

$$\zeta = \overline{\eta}^{-1}, \qquad \varphi = \zeta * \eta, \qquad \varphi' = \eta * \zeta.$$

Proposition (M)

•
$$\zeta_I(g) = \begin{cases} 1 & \text{if } g(A) = A \text{ for all } A \subseteq I, \\ 0 & \text{otherwise.} \end{cases}$$

- φ_I(g) = (ζ * η)_I(g) counts K ⊆ I such that for all K' ⊆ K, K' convex.
- $\varphi'_{I}(g) = (\eta * \zeta)_{I}(g)$ counts $K \subseteq I$ such that for all $x \in K$, $I \setminus x$ is convex.

Note φ , φ' are odd characters.

Definition

- (Stanley) A lattice L is supersolvable if it admits a maximal chain c such that for all chain m in L, the smallest sublattice in L containing c and m is distributive. We call c a chief chain of L.
- (Armstrong) A convex geometry g is supersolvable if L_g , the lattice of convex sets, is supersolvable.

The braid arrangement of $\{x, y, z, w\}$

Some bijections between combinatorial and geometric descriptions:

face —— set composition chamber —— linear order top cone —— partial order

< □ > < □ > < □ > < □ > < □ > < □ >

Example: order complex of a supersolvable convex geometry

э

Geometric Characterization of Supersolvable Convex Geometries

Theorem (M)

Let g be a convex geometry. Let $V_g = \Delta(\overline{L(g)})$. Let $V_{p_1},..., V_{p_k}$ be the maximal top cones in V_g (they correspond to partial orders $p_1,..., p_k$, respectively). Then the following statements are equivalent. (1) $\bigcap_{i=1}^k V_{p_i}$ contains at least one chamber.

- (2) There exists a partial order p_0 on I with $V_{p_0} = \bigcap_{i=1}^k V_{p_i}$.
- (3) g is supersolvable.

Example and Non-example

Supersolvable convex geometries and the flag

æ

Let g be a supersolvable convex geometry, and let p_0 be the partial order with V_{p_0} the intersection of all maximal top cones V_p in V_g . Let $\overline{p_0}$ be the partial order obtained by reversing relations in p_0 . Fix any linear order ℓ_0 satisfying $\ell_0 \in V_{p_0}$ (so $\overline{\ell_0} \in V_{\overline{p_0}}$,).

Theorem (M)

Let $\alpha \vDash n$.

•
$$[m(a,b)_{\alpha}]\Psi_{g}^{\eta} = |\{\ell \in V_{g} \mid \operatorname{Des}\begin{pmatrix} \ell_{0} \\ \ell \end{pmatrix}) = \alpha\}|.$$

• $[m(a,b)_{\alpha}]\Psi_{g}^{\zeta} = |\{\ell \in V_{g} \mid \operatorname{Des}\begin{pmatrix} \overline{\ell_{0}} \\ \ell \end{pmatrix}) = \alpha\}|.$

Example (for ζ)

For g_1 , V_{p_0} is in green. Let $\ell_0 = x|y|z|w$, so $\overline{\ell_0} = w|z|y|x \in V_{\overline{p_0}}$. Then $\Psi_{\zeta,g_1}(a,b) = baa + 3aba + 2bba + 2bab + 3abb + b^3$.

- baa corresponds to the chamber x|w|z|y.
- 3*aba* corresponds to the chambers w|x|y|z, y|x|w|z, z|x|w|y, etc.
- we can obtain the coefficients of the remaining *ab*-monomials by the same procedure.

cd-index

There is bijective correspondence between the set of non- commutative cd-monomials of degree n-1 and the set of sparse subsets of [n-1].

$$c^{a_1}dc^{a_2}d...c^{a_k}dc^{a_{k+1}} \leftrightarrow \{\deg(c^{a_1}d), \deg(c^{a_1}dc^{a_2}d), ..., \deg(c^{a_1}d...c^{a_k}d)\}.$$

Example: $cdcdd \leftrightarrow \{3, 6, 8\}$. Given a sparse subset S, let $m(c, d)_S$ be the corresponding cd-monomial. Let g be a supersolvable convex geometry with p_0 satisfying V_{p_0} is the intersection of all maximal top cones V_p in V_g . Fix any linear order ℓ_0 satisfying $\ell_0 \in V_{p_0}$ (so $\overline{\ell_0} \in V_{\overline{p_0}}$).

Theorem (M)

•
$$[m(c,d)_S]\Phi_g^{\varphi'} = 2^{|S|+1} \cdot |\{\ell \in V_g \mid \operatorname{Peak}(\begin{pmatrix} \ell_0 \\ \ell \end{pmatrix}) = S\}|.$$

•
$$[m(c,d)_S]\Phi_g^{\varphi} = 2^{|S|+1} \cdot |\{\ell \in V_g \mid \operatorname{Peak}(\begin{pmatrix} \ell_0 \\ \ell \end{pmatrix}) = S\}|.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Example (for φ')

For g_1 , we have $\Phi_{\varphi',g_1}(c,d) = 8c^3 + 8cd + 24dc$. Fix $\ell_0 = x|y|z|w$ so $\overline{\ell_0} = w|z|y|x \in V_{\overline{p_0}}$. Then we have $8c^3$ comes from 4 chambers x|w|z|y, x|y|z|w, x|z|w|y, x|y|w|z with no peaks with respect to $\overline{\ell_0}$. 8*cd* comes from 2 chambers x|w|y|z, x|z|y|w, each of which has one peak on position 3 with respect to $\overline{\ell_0}$. 24*dc* comes from 6 chambers w|x|y|z, w|x|z|y, y|x|w|z, y|x|z|w, z|x|w|y, z|x|y|w, each of which has one peak on position 2 with respect to $\overline{\ell_0}$.

Yichen Ma

Thank you!

<ロト < 四ト < 三ト < 三ト

3