On Computational Research Methods

Jennifer Elder

AMS Spring Central Sectional Meeting March 29, 2025

Brief outlines of two projects, focused on the following:

- How computational tools and databases can help new comers jump into a research area.
- One of the second se
- **③** How under-utilized FindStat is as starting point for research questions.

KU

Motivating Question: How many Stirling permutations are flattened?

Collaborators (2023)

Azia Barner

Adam Buck

Kim Harry

Pamela E. Harris

Anthony Simpson

Given $\mathcal{B} = \{b_1, b_2, \dots, b_k\}$ a set partition of [n], the Mathematica function

 $\texttt{Flatten}(\mathcal{B})$

returns the permutation of [n] arising from simply erasing the block dividers.

However, the output is dependent on the order of the blocks and the order of the elements in the blocks.

Example If
$$\mathcal{B} = \{\{9\}, \{2, 3, 5, 8\}, \{1, 10\}, \{4, 6, 7\}\},$$
 then
$$\texttt{Flatten}(\mathcal{B}) = 923581(10)467.$$

KU

Callan - formalized flattened definition

The *standard increasing* form of a set partition is the order of the blocks $\mathcal{B} = b_1 \mid b_2 \mid \cdots \mid b_k$ such that:

- elements in blocks are ordered from smallest to largest,
- 2 blocks are ordered by their minimal elements.

Callan - formalized flattened definition

The *standard increasing* form of a set partition is the order of the blocks $B = b_1 | b_2 | \cdots | b_k$ such that:

- elements in blocks are ordered from smallest to largest,
- Ø blocks are ordered by their minimal elements.

Example (Continued.)

Ordering the blocks of $\ensuremath{\mathcal{B}}$ and its elements as above yields

$$\underbrace{1,10}_{b_1} \mid \underbrace{2,3,5,8}_{b_2} \mid \underbrace{4,6,7}_{b_3} \mid \underbrace{9}_{b_4}.$$

Then

 $\texttt{Flatten}(\mathcal{B}) = 1(10)23584679.$

Definition

A word $w \in [n]^n$ is a weakly flattened word with runs of weak ascents if the leading values of its runs appear in weakly increasing order.

Flattened words of length $n \subseteq$ Words of length n

Example			
	Words	Leading Terms	Flattened?
	<u>1</u> 125 <u>1</u> 4 <u>3</u>	$1 \le 1 \le 3$	\checkmark
	<u>1</u> 125 <u>4</u> 13	$1 \le 4 \not \le 1$	×

A **Stirling permutation** of order *n* is a permutation on the multiset $[n]_2 = \{1, 1, 2, 2, ..., n, n\}$ such that

• numbers between the *i* values must be greater than *i*,

we refer to such values as being *nested* between *i*.

Flattened Stirling Permutations

Example

If
$$w = \underbrace{1233}_{\sigma_1} \underbrace{2}_{\sigma_2} \underbrace{1}_{\sigma_3} \in \mathcal{Q}_3$$

then

$$1 \leq 2 \nleq 1.$$

Thus, 123321 \notin flat(Q_3).

Flattened Stirling Permutations

Example

If
$$w = \underbrace{1233}_{\sigma_1} \underbrace{2}_{\sigma_2} \underbrace{1}_{\sigma_3} \in \mathcal{Q}_3$$

then

$$1 \leq 2 \nleq 1.$$

Thus, 123321 \notin flat(Q_3).

Example

If
$$w = 122$$
 133 $\sigma_2 \in Q_3$
then

$$1 \leq 1.$$

Thus, $122133 \in \text{flat}(\mathcal{Q}_3)$.

Computationally, we found:

Table: Number of flattened Stirling permutations

Note that the cardinalities of $flat(Q_n)$ are identically to the Dowling numbers, described in OEIS A007405.

"This is the number of type B set partitions, see R. Suter." - Per W. Alexandersson, Dec 19. 2022 Computationally, we found:

Table: Number of flattened Stirling permutations

Note that the cardinalities of $flat(Q_n)$ are identically to the Dowling numbers, described in OEIS A007405.

"This is the number of type B set partitions, see R. Suter." - Per W. Alexandersson, Dec 19. 2022

New Goal: Give a bijection between flattened Stirling permutations of order *n* and type *B* set partitions.

Type B: set partitions on the interval of integers [-n, n].

Example

Note that for n = 5,

$$\pi = \{\{0, 1, -1, 2, -2\}, \{3, -4\}, \{-3, 4\}, \{5\}, \{-5\}\}$$

is a type B set partition of [-5, 5].

• Note π is a set partition.

• For
$$\beta = \{3, -4\} \in \pi$$
, then $-\beta = \{-3, 4\} \in \pi$.

• For
$$\beta = \{5\} \in \pi$$
, then $-\beta = \{-5\} \in \pi$.

• Zero-block:
$$\beta = \{0, 1, -1, 2, -2\}$$
, and $\beta = -\beta$.

Our Main Result

Theorem

For $n \ge 1$, the set $\prod_{n=1}^{B}$ is in bijection with the set flat(Q_n).

Sketch of Proof: (\Rightarrow) Given a type B set partition,

$$\pi = \left\{ \begin{cases} \{0\}, \{1\}, \{-1\}, \{4\}, \{-4\}, \{2, 7, -8\}, \{-2, -7, 8\}, \\ \{3, 5, 6, -9, -10\}, \{-3, -5, -6, 9, 10\} \end{cases} \right\}$$

- Adler's notation and bump up each of the number's magnitude, $1 \mid 2 \mid \overline{938} \mid (\overline{10})(\overline{11})467 \mid 5$
- duplicate each number and nest accordingly,

 $1 \ 1 \ | \ 2 \ 2 \ | \ \overline{9} \ \overline{9} \ 3 \ 8 \ 8 \ 3 \ | \ (\overline{10}) \ (\overline{10}) \ (\overline{11}) \ (\overline{11}) \ 4 \ 6 \ 6 \ 7 \ 7 \ 4 \ | \ 5 \ 5$

• and eliminate the bars and dividers.

1 1 2 2 9 9 3 8 8 3 10 10 11 11 4 6 6 7 7 4 5 5

ĸu

Motivating Question: Using a database of permtuation statisitics, how many instances of the homomesy phenomenon exist?

Collaborators (2021)

Joint work with Jessica Striker, Erin McNicholas, Nadia Lafrenière, and Amanda Welch

Jennifer Elder

KU

• Consider a set, an action on that set, and a statistic.

• Homomesy: whenever the average of the statistic over the whole set is the same as the average of the statistic over every orbit.

• Our set was S_n , and the actions on S_n and statistics on permutations came from considering all possible combinations found in the FindStat Database.

At the time, FindStat included 387 permutation statistics and 19 bijective maps on permutations. Using the interface with SageMath computational software, we tested all combinations of these maps and statistics, finding 117 potential instances of homomesy, involving 9 maps and 68 statistics. We proved the following:

- Lehmer code rotation (45 homomesic statistics)
- Complement and reverse (22 statistics homomesic for both maps, 5 statistics homomesic for reverse but not complement, and 13 statistics homomesic for complement but not reverse)
- Foata bijection and variations (4 maps all having the same single homomesic statistic)
- Kreweras complement and inverse Kreweras complement (3 homomesic statistics)

Reverse, inverse and complement

New composition relationships: • $\mathcal{R}(\sigma^{-1}) = \mathcal{C}(\sigma)^{-1}$ • $(\mathcal{R} \circ \mathcal{C})^2 = e$ • $(\mathcal{R} \circ \mathcal{I})^4 = e$, where $\mathcal{I}(\sigma) = \sigma^{-1}$

Remark

No statistic in FindStat is homomesic under the inverse map. The reverse and complement will only ever have one fixed point iff n is odd.

A more interesting map: the Lehmer code rotation

The *Lehmer code* of a permutation encodes the number of inversions starting at a given position.

1234	(0,	Ο,	Ο,	0)	
2341	(1,	1,	1,	0)	
3412	(2,	2,	Ο,	0)	
4132	(3,	Ο,	1,	0)	
1324	(0,	1,	Ο,	0)	
2431	(1,	2,	1,	0)	
3124	(2,	Ο,	Ο,	0)	
4231	(3,	1,	1,	0)	
1423	(0,	2,	Ο,	0)	
2143	(1,	Ο,	1,	0)	
3214	(2,	1,	Ο,	0)	
4321	(3,	2,	1,	0)	

2134	(1,	Ο,	Ο,	0)
3241	(2,	1,	1,	0)
4312	(3,	2,	Ο,	0)
1243	(0,	Ο,	1,	0)
2314	(1,	1,	Ο,	0)
3421	(2,	2,	1,	0)
4123	(3,	Ο,	Ο,	0)
1342	(0,	1,	1,	0)
2413	(1,	2,	Ο,	0)
3142	(2,	Ο,	1,	0)
4213	(3,	1,	Ο,	0)
1432	(0,	2,	1,	0)

1234	(0,	0,	0,	0)	2134	(1,	0,	0,	0)
2341	(1,	1,	1,	0)	3241	(2,	1,	1,	0)
3412	(2,	2,	Ο,	0)	4312	(3,	2,	Ο,	0)
4132	(3,	Ο,	1,	0)	1243	(0,	Ο,	1,	0)
1324	(0,	1,	Ο,	0)	2314	(1,	1,	Ο,	0)
2431	(1,	2,	1,	0)	3421	(2,	2,	1,	0)
3124	(2,	Ο,	Ο,	0)	4123	(3,	Ο,	Ο,	0)
4231	(3,	1,	1,	0)	1342	(0,	1,	1,	0)
1423	(0,	2,	Ο,	0)	2413	(1,	2,	Ο,	0)
2143	(1,	Ο,	1,	0)	3142	(2,	Ο,	1,	0)
3214	(2,	1,	Ο,	0)	4213	(3,	1,	Ο,	0)
4321	(3,	2,	1,	0)	1432	(0,	2,	1,	0)

All orbits have size $lcm(1, 2, 3, \ldots, n)$.

Theorem (E.-Lafrenière-McNicholas-Striker-Welch)

45 statistics are homomesic under the Lehmer code rotation, including:

- right-to-left minima, not left-to-right minima
- descents
- inversions
- various permutation patterns
- 1st entry, not last
- rank

The *rank* of a permutation is its rank among the permutations of n ordered lexicographically.

σ	123	132	213	231	312	321
L(o)	000	010	100	110	200	210

Observation

Sorting lexicographically following the Lehmer code is equivalent to sorting lexicographically following the permutations.

Observation

Sorting lexicographically following the Lehmer code is equivalent to sorting lexicographically following the permutations.

Proposition

The rank is given by $rank(\sigma) = 1 + \sum_{i=1}^{n-1} L(\sigma)_i (n-i)!$, where $L(\sigma)_i$ is the *i*-th entry of the Lehmer code of σ .

Theorem

The rank is homomesic for the Lehmer code rotation and the reverse.

Remark

We tested several maps dictated by the Lehmer code, and none of them exhibited homomesy!

Question

What is the geometric meaning of the Lehmer code rotation?

KU

Flattened Stirling Permutations appeared in Integers.

Homomesies on permutations appeared in Mathematics of Computation, and a preprint is available on the arXiv.