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“Shellable”?

Let ∆ be a pure simplicial complex.

A shelling of ∆ is an ordering T1, . . . , Tn of the facets of ∆ such that
Ti ∩ (T1 ∪ · · · ∪ Ti−1) is a pure (dim∆− 1)-dimensional simplicial
complex for every 2 ≤ i ≤ n.

∆ is shellable if such a shelling exists.

T1, T2, T3 is a shelling. T1, T2 is not a shelling.
dim T1 ∩ T2 = dim 3 = 0 < 1.



“Shellable”?

Every shelling gives a partitioning of the complex.

Minimal new face
of T1: ∅.

Minimal new face
of T2: 4.

Minimal new face
of T3: 5.

=⇒ Partitioning:
[∅, 123] ⊔ [4, 134] ⊔ [5, 345].
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“Simplicial sphere”?

∆ is a simplicial (d− 1)-sphere if its geometric realization is
homeomorphic to a topological (d− 1)-sphere.

Simplicial 1-spheres = cycles.
Simplicial 2-spheres = boundaries of
simplicial 3-polytopes (Steinitz’s

theorem).
They are all shellable.
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“Simplicial sphere”?

Theorem (Goodman, Pollack, 1986 [4]; Alon, 1986 [1])
There are 2Θ(n log n) combinatorially distinct d-polytopes with n
vertices for d ≥ 4.

Theorem (Kalai, 1988 [8]; Lee, 2000 [10]; Nevo, Santos, Wilson, 2016
[11]; Benedetti, Ziegler, 2011 [2]; Stanley, 1975 [12]; Y., 2024 [13])
There are 2Θ(n⌈(d−1)/2⌉) combinatorially distinct shellable
(d− 1)-spheres with n vertices for d ≥ 4.



“Puzzle”?

The facet-ridge graph (puzzle) of ∆ is a graph G where

• vertices represent the facets of ∆,
• two vertices form an edge ⇐⇒ the corresponding facets share
a ridge.



“Puzzle”?

Conjecture (Kalai, 2009 [7])
Every simplicial sphere is completely determined by its facet-ridge
graph.

Theorem (Blind and Mani-Levitska, 1987 [3]; Kalai, 1988 [9])
Every polytopal sphere is completely determined by its facet-ridge
graph.

Theorem (Y., 2024)
Every shellable sphere is completely determined by its facet-ridge
graph.

The facet-ridge graph of a 1-sphere is isomorphic to
the sphere itself.
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“Puzzle”?

Task
We know that G is the facet-ridge graph of some shellable
(d− 1)-sphere ∆. The goal is to recover the combinatorial structure
of ∆.

Step 1. Find “good acyclic orientations” of G.
Step 2. Read off a shelling of ∆ and its corresponding

partitioning.
Step 3. For every face σ of ∆, find all facets that contain σ.

Language: k-frames and k-systems (Joswig, Kaibel, Körner, 2002 [6]).

Proposition
∆ is shellable ⇐⇒ G has a good acyclic orientation.
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Step 2. Read off a shelling and its corresponding partitioning.

Repeatedly taking sinks of the graph to get a shelling of ∆.

The corresponding partitioning:
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Step 3. For every face σ of ∆, find all facets that contain σ.

Observation

For (d− 1)-faces (facets): contained only in itself.

For (d− 2)-faces (ridges): contained in exactly two facets, indicated
by G.

For the (−1)-face (∅): contained in every facet.
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Step 3. For every face σ of ∆, find all facets that contain σ.

Lemma

• For every minimal new face in the shelling, we can determine
which facets contain it.

• If for each face NOT in T1, we know which facets contain it, then
we can also determine such information for every face in T1.
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Step 3. For every face σ of ∆, find all facets that contain σ.

A 3-dimensional example.



What’s next?

Conjecture (Kalai, 2009 [7])
Every simplicial sphere is completely determined by its facet-ridge
graph.

• Constructible spheres? (Is there even a constructible but
nonshellable sphere?)

• Partitionable spheres? (Is there a non-partitionable simplicial
sphere?)

• Flag spheres? (Clique complexes of graphs. All minimal
nonfaces are 1-dimensional.)

• Balanced spheres? (The facet-ridge graphs are bipartite (Joswig,
2002 [5]).)

• Does the facet-ridge graph determine the f-vector of a
nonshellable sphere? (Or more generally, of any
Cohen–Macaulay manifold?)
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Step 1. Find “good acyclic orientations” of G.

Define
V∆(σ) := {t ∈ V(G) : the corresponding facet T of t contains σ}.

An acyclic orientation O of G is good if O induces exactly one sink on
every G[V∆(σ)].
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Proposition
∆ is shellable ⇐⇒ G has a good acyclic orientation.

Problem
How to find the good acyclic orientations without knowing ∆?

hOk = # vertices of G with indegree k.

fO = hO0 + 2hO1 + · · ·+ 2dhOd .

Proposition (Essentially due to Kalai [9])
Let M = min{fO : O is an acyclic orientation of G}. Then M is the
total number of faces of ∆, and O is good if and only if fO = M.

Key idea in the proof.

fO = # (star, sink) pairs ≥ # stars = # faces.
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Step 3. For every face σ of ∆, find all facets that contain σ.

Fact
Define
V∆(σ) := {t ∈ V(G) : the corresponding facet T of t contains σ}.

For a non-empty face σ ∈ ∆, G[V∆(σ)] is the facet-ridge graph of a
lower dimensional shellable sphere lk∆ σ.

V∆({6, 7, 9, 13}) = {6, 7, 9, 10, 13, 14, 16, 17}.


