Polytopal Realizations and Faces of Extended Nestohedra

Teresa Yu

Joint with Quang Dao, Christina Meng, Julian Wellman, Zixuan Xu, Calvin Yost-Wolff

UMN Combinatorics REU, Mentor: Vic Reiner

AMS Special Session on Algebraic, Geometric, and Topological Combinatorics – 9/12/20

Associahedron and Permutohedron

Vastly generalize to nestohedra

Nestohedra Results

Simple convex polytopes	Multiple realizations,
	e.g., Postnikov '09
Gal's conjecture holds	Volodin '10
flag nestohedra	
Combinatorial interpretation	Postnikov–Reiner–Williams '08
for γ -vector for	
subclass of flag nestohedra	
Volumes and	Postnikov '09
Ehrhart polynomials	
Some are dual to	Fomin–Zelevinsky '03
cluster complexes	
for cluster algebras	

Motivation for Extended Nestohedron

- Lam–Pylyavskyy introduced Laurent phenomenon (LP) algebras (2012), generalizing cluster algebras
- Examined cluster complex of linear LP algebras and conjectured that the complex is a simplicial polytope
- Goal: study this complex and its dual (extended nestohedron), and compare with the nestohedron

Building Sets

Definition

A (connected) building set \mathcal{B} on $[n] := \{1, \ldots, n\}$ is a collection of subsets of [n] such that

- **1** \mathcal{B} contains all singletons $\{i\}$ for all $i \in [n]$, and [n]
- **2** if $I, J \in \mathcal{B}$ with $I \cap J \neq \emptyset$, then $I \cup J \in \mathcal{B}$.

If Γ is a graph on vertex set [n], then the associated **graphical building set** \mathcal{B}_{Γ} is defined to be

$$\mathcal{B}_{\Gamma} = \{I \subseteq [n] : \Gamma|_I \text{ is connected}\}.$$

Building Set Examples

Complete graph K_n

- all subsets of [n]
- $\mathcal{B}_{\mathcal{K}_4} = \{1, 2, 3, 4, 12, 13, 14, \\ 23, 24, 34, 123, 234, 124, 134, 1234\}$

Path graph P_n

- all interval subsets of [n]
- $\blacksquare \ \mathcal{B}_{P_3} = \{1, 2, 3, 12, 23, 123\}$

Non-graphical building set

$$\mathcal{B} = \{1, 2, 3, 4, 12, 13, 23, 123, 1234\}$$

Nested Collections

Definition

For a building set \mathcal{B} , a **nested collection** N of \mathcal{B} is a collection of elements $\{I_1, \ldots, I_m\} \subseteq \mathcal{B} \setminus [n]$ such that

- **1** for any $i \neq j$, I_i and I_j are either nested or disjoint, and
- 2 for any I_{i_1}, \ldots, I_{i_k} pairwise disjoint, their union is not an element of \mathcal{B} .

Example

Consider $\mathcal{B} = \mathcal{B}_{P_4} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}.$

- $\{1, 3, 34\}$ is a nested collection.
- $\{1, 2, 23\}$ is not a nested collection since $\{1\} \cup \{2\} \in \mathcal{B}$.

Definition

For a building set \mathcal{B} on [n], the **nested complex** $\mathcal{N}(\mathcal{B})$ is the simplicial complex with

• vertices $\{I \mid I \in \mathcal{B} \setminus [n]\}$

• faces $\{I_1, \ldots, I_m\}$ that are nested collections of \mathcal{B}

The **nestohedron** $\mathcal{P}(\mathcal{B})$ is the polytope polar dual to the nested complex $\mathcal{N}(\mathcal{B})$.

Associahedron Revisited

 $\mathcal{N}(\mathcal{B}_{P_4})$

\$\mathcal{P}(\mathcal{B}_{P_n})\$ is the associahedron of order \$n+1\$
 \$\mathcal{P}(\mathcal{B}_{K_n})\$ is the permutohedron of order \$n\$

Extended Nested Collections

Definition

For a building set \mathcal{B} on [n], an **extended nested collection** N^{\Box} of \mathcal{B} is a collection of elements $\{I_1, \ldots, I_m, x_{i_1}, \ldots, x_{i_r}\}$ such that

- 1 $\{I_1, \ldots, I_m\}$ forms a nested collection of \mathcal{B}
 - Can now include [n]
- **2** $i_j \in [n]$ for all j, and $i_j \notin I_k$ for all $1 \le k \le m$

Example

- $\mathcal{B}=\mathcal{B}_{P_4}$
 - $\{1, 3, 34, x_2\}$ is an extended nested collection.
 - $\{1, 3, 34, x_4\}$ is not an extended nested collection.

Definition

For a building set \mathcal{B} on [n], the extended nested complex $\mathcal{N}^{\Box}(\mathcal{B})$ is the simplicial complex with

- vertices $\{I \mid I \in \mathcal{B}\} \cup \{x_i \mid i \in [n]\}$
- faces $\{I_1, \ldots, I_m, x_{i_1}, \ldots, x_{i_r}\}$ that are extended nested collections of \mathcal{B}

The extended nestohedron $\mathcal{P}^\square(\mathcal{B})$ is the polytope dual to the extended nested complex

Associahedron Revisited²

$$\mathcal{P}^{\sqcup}(\mathcal{B}_{\mathcal{P}_{n-1}})\cong\mathcal{P}(\mathcal{B}_{\mathcal{P}_n})\cong\mathsf{Assoc}_{n+1}$$

What is known so far

Extended nestohedra for graphical $\mathcal B$ previously studied

- Devadoss-Heath-Vipismakul introduced graph cubeahedra in 2011 (before LP algebras introduced!)
- Manneville–Pilaud '17 studied its dual, called it the design nested complex

	Non-extended	Extended (□)
Polytopality	Yes	Yes for
		graphical ${\cal B}$ [DHV11]
		General \mathcal{B} : ?
Gal's conjecture	Yes	?
When is	Known for graphical \mathcal{B} [MP17]	
$\mathcal{N}^{\square}(\mathcal{B})\cong\mathcal{N}(\mathcal{B}')$	General \mathcal{B} : ?	

Note: {Extended nestohedron} \nsubseteq {Nestohedron}

	Non-extended	Extended (\Box)
Polytopality	Yes	Yes for
		graphical ${\cal B}$ [DHV11]
		Yes for all ${\cal B}$
Gal's conjecture	Yes	?
When is	Known for graphical \mathcal{B} [MP17]	
$\mathcal{N}^{\square}(\mathcal{B})\cong\mathcal{N}(\mathcal{B}')$	General \mathcal{B} : ?	

Theorem (REU)

For any building set \mathcal{B} , the extended nested complex $\mathcal{N}^{\Box}(\mathcal{B})$ can be realized as the boundary of a simplicial convex polytope.

• Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $i \in [n]$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.

 $\mathcal{B}_{P_3} = \{1, 2, 3, 12, 23, 123\}$

- Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $i \in [n]$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.
- Order the non-singletons of B by decreasing cardinality, then for each *I* ∈ B a non-singleton, perform stellar subdivision on the face *I* = {{*i*} | *i* ∈ *I*}, with the new added vertex labeled *I*.

$$\mathcal{B}_{P_3} = \{1, 2, 3, 12, 23, 123\}$$

- Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $i \in [n]$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.
- Order the non-singletons of B by decreasing cardinality, then for each *I* ∈ B a non-singleton, perform stellar subdivision on the face *I* = {{*i*} | *i* ∈ *I*}, with the new added vertex labeled *I*.

$$\mathcal{B}_{P_3} = \{1, 2, 3, 12, 23, 123\}$$

- Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $i \in [n]$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.
- Order the non-singletons of B by decreasing cardinality, then for each *I* ∈ B a non-singleton, perform stellar subdivision on the face *I* = {{*i*} | *i* ∈ *I*}, with the new added vertex labeled *I*.

$$\mathcal{B}_{P_3} = \{1, 2, 3, 12, 23, 123\}$$

- Consider \mathbb{R}^n with standard basis vectors e_1, \ldots, e_n . Start with cross polytope in \mathbb{R}^n with vertices e_i labeled $i \in [n]$ and vertices $-e_i$ labeled x_i for all $i \in [n]$.
- Order the non-singletons of B by decreasing cardinality, then for each *I* ∈ B a non-singleton, perform stellar subdivision on the face *I* = {{*i*} | *i* ∈ *I*}, with the new added vertex labeled *I*.
- The boundary of the resulting polytope is isomorphic to N[□](B).

$$\mathcal{B}_{P_3} = \{1, 2, 3, 12, 23, 123\}$$

Polytopal Realization

Dually: to realize $\mathcal{P}^{\Box}(\mathcal{B})$, start with *n*-cube and shave faces corresponding to non-singleton building set elements

Flag polytope: dual to a simplicial complex Δ s.t. collection *C* of vertices forms simplex in $\Delta \Leftrightarrow$ there's an edge between any two vertices of *C* in 1-skeleton of Δ

f-vector: f_i = number of *i*-dimensional faces

 γ -vector: concise encoding of *f*-vector with smaller integers

Gal's Conjecture

The γ -vector of any flag simple polytope is nonnegative.

Gal's Conjecture for $\mathcal{P}^{\Box}(\mathcal{B})$

	Non-extended	Extended (\Box)
Polytopality	Yes	Yes for all ${\cal B}$
Gal's conjecture	Yes	Yes
When is	Known for graphical \mathcal{B} [MP17]	
$\mathcal{N}^{\square}(\mathcal{B})\cong\mathcal{N}(\mathcal{B}')$	General \mathcal{B} : ?	

Gal's Conjecture

The γ -vector of any flag simple polytope is nonnegative.

Gal's Conjecture for $\mathcal{P}^{\square}(\mathcal{B})$

Theorem (REU)

Gal's conjecture holds for any flag extended nestohedron, i.e., the γ -vector of $\mathcal{P}^{\Box}(\mathcal{B})$ is nonnegative if the polytope is flag.

Proof idea:

- Start with building set \mathcal{B} such that $\mathcal{P}^{\Box}(\mathcal{B})$ is flag
- There exists building set B' ⊆ B, and P = P[□](B') has nonnegative γ-vector
- Add back in elements $\mathcal{B} \setminus \mathcal{B}'$
 - \blacksquare Corresponds to shaving a codimension 2 face of $\mathcal P$
 - \blacksquare $\gamma\text{-vector}$ remains nonnegative with each shave

Isomorphisms $\mathcal{N}^{\square}(\mathcal{B})\cong\mathcal{N}(\mathcal{B}')$

	Non-extended	Extended (\Box)
Polytopality	Yes	Yes for all ${\cal B}$
Gal's conjecture	Yes	Yes
When is	Known for graphical ${\cal B}$ [MP17]	
$\mathcal{N}^{\square}(\mathcal{B})\cong\mathcal{N}(\mathcal{B}')$	Sufficient conditions for general ${\cal B}$	
	(these conditions also nec. for subclass of $\mathcal B$)	

Isomorphisms $\mathcal{N}^{\square}(\mathcal{B}) \cong \mathcal{N}(\mathcal{B}')$

Theorem (Manneville-Pilaud '17)

Let G, G' be undirected graphs such that $\mathcal{N}^{\Box}(\mathcal{B}_G) \cong \mathcal{N}(\mathcal{B}_{G'})$. Then G is a spider graph and G' is the corresponding octopus graph.

Isomorphisms $\mathcal{N}^{\square}(\mathcal{B}) \cong \mathcal{N}(\mathcal{B}')$

Theorem (REU)

Let \mathcal{B} be a spider building set and \mathcal{B}' the corresponding octopus building set. Then $\mathcal{N}^{\Box}(\mathcal{B}) \cong \mathcal{N}(\mathcal{B}')$.

Spider building set

Octopus building set

Building set elements are circled; additional elements formed by considering edges between building set elements circled in blue, along with middle vertex for octopus building set

Summary

	Non-extended	Extended (\Box)
Polytopality	Yes	Yes for all ${\cal B}$
Gal's conjecture	Yes	Yes
When is	Sufficient cond	itions for general ${\cal B}$
$\mathcal{N}^{\square}(\mathcal{B})\cong\mathcal{N}(\mathcal{B}')$		

Check out our preprint arXiv:1912.00273

Thank you!

References

- Satyan L. Devadoss, Timothy Heath, and Wasin Vipismakul.
 "Deformations of bordered surfaces and convex polytopes". Notices Amer. Math. Soc. 58.4 (2011), pp. 530-541.
- Sergey Fomin and Andrei Zelevinsky. "Y-systems and generalized associahedra". Ann. of Math. 158.3 (2003), pp. 977-1018.
- Thomas Lam and Pavlo Pylyavskyy. "Laurent phenomenon algebras". Camb. J. Math. 4.1 (2016), pp. 121-162.
- Thibault Manneville and Vincent Pilaud. "Compatibility fans for graphical nested complexes". J. Combin. Theory Ser. A 150 (2017), pp. 36-107.
- Alexander Postnikov. "Permutohedra, associahedra, and beyond". International Mathematics Research Notices 2009.6 (2009), pp. 1026-1106.
- Alexander Postnikov, Victor Reiner, and Lauren Williams. "Faces of generalized permutohedra", *Documenta Mathematica* 13 (2008), pp. 207-273.
- V. D. Volodin. "Cubical realizations of flag nestohedra and a proof of Gal's conjecture for them". Uspekhi Mat. Nauk 65.1(391) (2010), pp. 188-190.