A Proof of Grünbaum's Lower Bound Conjecture on general polytopes

Lei Xue
University of Washington

lxue@uw.edu

September 12
Polytope: convex hull of finitely many points in \mathbb{R}^d.

Polytope: convex hull of finitely many points in \mathbb{R}^d.

Simplex: convex hull of affinely independent points.
Polytope: convex hull of finitely many points in \mathbb{R}^d.

Simplex: convex hull of affinely independent points.
- **Polytope**: convex hull of finitely many points in \mathbb{R}^d.
- **Simplex**: convex hull of affinely independent points.
- **Face**: intersection with a supporting hyperplane.
- **Polytope**: convex hull of finitely many points in \mathbb{R}^d.
- **Simplex**: convex hull of affinely independent points.
- **Face**: intersection with a supporting hyperplane.
Polytope: convex hull of finitely many points in \mathbb{R}^d.

Simplex: convex hull of affinely independent points.

Face: intersection with a supporting hyperplane.
Polytope: convex hull of finitely many points in \mathbb{R}^d.

Simplex: convex hull of affinely independent points.

Face: intersection with a supporting hyperplane.

k-dimensional face: k-face.
Faces:

0-faces, 1-faces, ..., (d-1)-faces, d-face.

(vertices) (edges) (facets) polytope "itself"
Faces:
- 0-faces: vertices
- 1-faces: edges
- \((d-1) \)-faces: facets
- d-face: polytope “itself”

f-vector

\[f(P) = < f_0(P), f_1(P), \ldots, f_k(P), \ldots f_{d-1}(P) >\]

\# of k-faces
Faces:
- 0-faces (vertices)
- 1-faces (edges)
- \((d-1)\)-faces (facets)
- d-face

f-vector

\[f(P) = < f_0(P), f_1(P), \ldots, f_k(P), \ldots, f_{d-1}(P) > \]

\# of \(k\)-faces

\[f(P) = < 10, 15, 7 > \]

\[P = \]
Vertex figure:
Vertex figure of P at v:

![Diagram of a vertex figure](image)
Vertex figure of P at v:
Vertex figure of P at v:

P

P/v:
Vertex figure of P at v:

Prop.: $\{k$-faces of P that contain $v\} \leftrightarrow \{\text{($k-1$)-faces of } P/\nu\}$
Main Questions: P: d-polytope with n vertices.
Main Questions: \(P: \text{d-} \text{-polytope with } n \text{ vertices.} \)

- What is the MIN possible \(f_i(P) \)?
Main Questions: $P: d$-polytope with n vertices.

- What is the MIN possible $f_i(P)$?

Moreover,

- Is there a polytope that has componentwise minimal f-vector?
Restricting to simplicial polytopes:
—Yes!
Restricting to simplicial polytopes:

- Yes!

- **LBT (Barnette 1973)**: Stacked polytopes have componentwise minimal f-vectors.
Restricting to simplicial polytopes:
— Yes!

- LBT (Barnette 1973): Stacked polytopes have componentwise minimal f-vectors.

(and we know a lot more...
Restricting to simplicial polytopes:

—Yes!

- **LBT (Barnette 1973):** Stacked polytopes have componentwise minimal f-vectors.

 (and we know a lot more...)

- **UBT (McMullen 1970):** Cyclic polytopes have componentwise maximal f-vectors.

- **g-Thm (Billera-Lee, Stanley 1980 1980):** FULL characterization of f-vectors.
Restricting to simplicial polytopes:
— Yes!

- **LBT (Barnette 1973)**: Stacked polytopes have componentwise minimal f-vectors among simplicial polytopes.
 (and we know a lot more...)

- **UBT (McMullen 1970)**: Cyclic polytopes have componentwise maximal f-vectors among general polytopes.

- **g-Thm (Billera–Lee, Stanley 1980)**: FULL characterization of f-vectors of simplicial polytopes.
Is there a polytope that has componentwise minimal f-vector?

For general polytopes:

\(P: d\)-polytope over \(n \) vertices.
Is there a polytope that has componentwise minimal f-vector?

For general polytopes:

If \(n > 2d \) \(\Rightarrow \) NOT even a conjecture...
Is there a polytope that as componentwise minimal f-vector?

For general polytopes:

If \(n > 2d \) \(\Rightarrow \) NOT even a conjecture...

\(n \leq 2d \): Grünbaum's Conjecture (1967)
Grünbaum's Conjecture: \text{P: d-polytope over } \text{d+S vertices. (S \leq d)}

The number of k-faces of P is at least

\[(d+1) \binom{k+1}{d+1} + \binom{d}{k+1} - \binom{d+1-s}{k+1}.\]
Grüenbaum’s Conjecture: \(P: \text{d-polytope over } d+S \text{ vertices.} (S \leq d) \)

The number of \(k \)-faces of \(P \) is at least

\[
\phi_k(d+S, d) := \binom{d+1}{k+1} + \binom{d}{k+1} - \binom{d+1-S}{k+1}.
\]
Grüenbaum's Conjecture: \(P: d\)-polytope over \(d+S \) vertices. \((S \leq d)\)

The number of \(k \)-faces of \(P \) is at least

\[
\phi_k(d+S, d) := \binom{d+1}{k+1} + \binom{d}{k+1} - \binom{d+1-S}{k+1}.
\]

Previous Results:

- Grüenbaum (1967): \(S = 2, 3, 4 \).
Grünbaum’s Conjecture: \(P: d \)-polytope over \(d+S \) vertices. \((S \leq d)\)

The number of \(k \)-faces of \(P \) is at least

\[
\phi_k(d+S, d) := \binom{d+1}{k+1} + \binom{d}{k+1} - \binom{d+1-S}{k+1}.
\]

Previous Results:

- Grünbaum (1967): \(S = 2, 3, 4 \).
- Pineda-Villavicencio, Ugon, Yost (2019): \(k = 1 \) (edge numbers)
Theorem 1 (X., 2020).

For all d and $s \leq d$, let P be a d-polytope with $d+s$ vertices, then

$$f_k(P) \geq \Phi_k(d+s, d) \text{ for every } k.$$
Key Prop.

P: d-polytope. For EVERY set of m vertices ($m \leq d$)
$$\{v_1, v_2, \ldots, v_m\} \subseteq V(P),$$

$$\#\left\{ k\text{-faces of } P \text{ that contain some } v_i \right\} \geq \sum_{i=1}^{m} \binom{d-i+1}{k}.$$
The Proof \((\text{of Grünbaum's Conj.})\)

Induction on \(s\):

\[P: d\text{-polytope}, f_0(P) = d + s \quad (s \leq d) \]
The Proof (of Grünbaum's Conj.)

Induction on s:

P: d-polytope, $f_0(P) = d + s$ ($s \leq d$)

Base case: \checkmark
The Proof (of Grünbaum's Conj.)

Induction on s:

- **Base case**: \checkmark
- **Inductive Step**: The statement holds for all $s' < s$ and all $d' \geq s' \implies$ Also hold for s and all $d \geq s$
The Proof (of Grünbaum's Conj.)

Induction on s: P: d-polytope, $f_0(P) = d + s$ ($s \leq d$)

Base case: ✓

Inductive Step: The statement holds for all $s' < s$ and all $d' \geq s'$ ⇒ Also hold for s and all $d \geq s$

- Pick a facet F with $f_0(F) = d + s - m$, $m > 1$.
- $\{v_1, \ldots, v_m\} = V(P) - V(F)$.
The Proof (cont.)

- k-faces of P
The Proof (cont.)

- k-faces of P \rightarrow k-faces of F.

\Rightarrow Containing some v_i.
The Proof (cont.)

- k-faces of $P \rightarrow k$-faces of F (inductive hyp.)

\Rightarrow Containing some ν_i
The Proof (cont.)

\[k\text{-faces of } P \rightarrow k\text{-faces of } F \quad \text{(inductive hyp.)} \]

\[\rightarrow \text{containing some } v_i \quad \text{(Key Prop.)} \]
The Proof (cont.)

- k-faces of P \rightarrow k-faces of F (inductive hyp.)

\Rightarrow containing some ν_i (Key Prop.)

$$f_k(P) \geq \phi_k(d+s-m, d-1) + \sum_{i=1}^{m} \binom{d-i+1}{k}$$
The Proof (cont.)

- k-faces of $P \rightarrow k$-faces of F (inductive hyp.)

 \[f_k(P) \geq \phi_k(d+s-m, d-1) + \sum_{i=1}^{m} \binom{d-i+1}{k} \]

 \[\quad \text{(rearrangement)} \]

 \[= \phi_k(d+s, d) + \sum_{i=3}^{m} \left[\binom{d-i+1}{k} - \binom{d-i+1-(s-m)}{k} \right] \geq \phi_k(d+s, d). \]
The Proof (cont.)

- If there exists NO facet with $d+s-m$ vertices with $m \geq 1$,

![Diagram](image.png)
The Proof (cont.)

- If there exists NO facet with \(d+s-m\) vertices with \(m>1\), then every facet has exactly \(d+s-1\) vertices. Hence \(P\) is a \(d\)-simplex.
Treatment of Equality
Treatment of Equality

Which polytope P has $f_k(P) = \Phi_k(d+s, d)$ for ALL k's?
Treatment of Equality

Which polytope P has

$$f_k(P) = \Phi_k(d+s, d)$$

for \{ALL \ k's\}?

\{SOME\}
Pyramid:

Apex

Basis
Pyramid:

- Apex
- Basis

k-fold pyramid
Pyramid:

A point $x \in \mathbb{R}^d$ beyond a facet:
Pyramid:

A point $x \in \mathbb{R}^d$ beyond a facet F.
Pyramid:

A point $x \in \mathbb{R}^d$ beyond a facet F: beyond 1 facet
Pyramid:

A point $x \in \mathbb{R}^d$ beyond a facet F: beyond 1 facet
Pyramid:

A point \(x \in \mathbb{R}^d \) beyond a facet \(F \):

- beyond 2 facets
- Pyramid:

- A point $x \in \mathbb{R}^d$ beyond a facet F:

- Dual polytope
- Pyramid:
- A point $x \in \mathbb{R}^d$ beyond a facet F
- Dual polytope P^*
- Pyramid:
- A point $x \in \mathbb{R}^d$ beyond a facet F
- Dual polytope P^*
Notation: \((a \geq 0)\)

\(\Gamma^a\)

\(\alpha\)-simplex
Notation: \((a \geq 0)\)

\[T^a \rightarrow T_m^a \]

\(a \)-simplex

Put a new vertex beyond \(m \) facets

Simplicial \(a \)-polytope
Notation: \((\alpha \geq 0)\)

- \(\tau^\alpha\): \(\alpha\)-simplex
 - \(m\) facets
 - Put a new vertex beyond

- \(T_m^\alpha\): simplicial \(\alpha\)-polytope
 - \((d-a)\)-fold pyramid

- \(T_m^{d-d-a}\): \(d\)-polytope
Notation: \((a \geq 0)\)

- \(\tau^a\): \(a\)-simplex
- \(T^a_m\): \(a\)-polytope
- \(T^{d-d-a}_m\): \(d\)-polytope
- \(\tau^a_{m}\): \((d-a)\)-fold pyramid

Equivalently,

\[T^a_m = T^m_m \oplus T^{a-m}_m \]

\[T^{d-d-a}_m = T^{d-a-1}_m \times (T^m_m \oplus T^{a-m}_m) \]
Lemmas (Grünbaum, 1967)

1. **Lem. 1** \(T_m^d = T_{d-m}^d \)
Lemmas (Grünbaum, 1967)

Lem. 1 $T_m^d = T_{d-m}^d$.

Δ^3
Lemmas (Grünbaum, 1967)

- Lem. 1 \(T_m^d = T_{d-m}^d \).
Lemmas (Grünbaum, 1967)

- Lem. 1: $T^d_m = T^d_{d-m}$.

\[
T_1^3 \sim T_2^3
\]
Lemmas (Grünbaum, 1967)

- **Lem. 1:** \(T_m^d = T_{d-m}^d \).

- **Lem. 2:** Every simplicial \(d \)-polytope with \(d+2 \) vertices is \(T_m^d \) for some \(m \) (\(1 \leq m \leq d-1 \)).
Lemmas (Grünbaum, 1967)

- Lem. 1: $T_m^d = T_{d-m}^d$.

- Lem. 2: Every simplicial d-polytope with $d+2$ vertices is T_m^d for some m ($1 \leq m \leq \lfloor \frac{d}{2} \rfloor$).
Lemmas (Grünbaum, 1967)

Lemma 3: For $0 \leq k \leq d-1$, $2 \leq a \leq d$, and $1 \leq m \leq \left\lfloor \frac{a}{2} \right\rfloor$,

$$f_k(T_m^{d,d-a}) = \binom{d+2}{d-k+1} - \binom{d-a+m-1}{d-k+1} - \binom{d-m+1}{d-k+1} + \binom{d-a+1}{d-k+1}.$$
Lemmas (Grünbaum, 1967)

- **Lem. 3:** For $0 \leq k \leq d-1$, $2 \leq a \leq d$, and $1 \leq m \leq \lfloor \frac{a}{2} \rfloor$,
 \[f_k(T_{m}^{d,d-a}) = {d+2 \choose d-k+1} - {d-a+m-1 \choose d-k+1} - {d-m+1 \choose d-k+1} + {d-a+1 \choose d-k+1}. \]

- **Corollary:** $f_k((T_{1}^{d,d-s})^*) = \Phi_k(d+s, d)$.

Lemmas (Grünbaum, 1967)

Lemma 3: For $0 \leq k \leq d-1$, $2 \leq a \leq d$, and $1 \leq m \leq \lfloor \frac{a}{2} \rfloor$,

$$f_k(T_m^{d,d-a}) = \dbinom{d+2}{d-k+1} - \dbinom{d-a+m-1}{d-k+1} - \dbinom{d-m+1}{d-k+1} + \dbinom{d-a+1}{d-k+1}.$$

Corollary: $f_k((T_d^{d,d-s})^*) = \Phi_k(d+s, d)$.
Lemmas (Grünbaum, 1967)

Lem. 3: For $0 \leq k \leq d-1$, $2 \leq a \leq d$, and $1 \leq m \leq \left\lfloor \frac{a}{2} \right\rfloor$,

$$f_k(T_m^{d,d-a}) = \binom{d+2}{d-k+1} - \binom{d-a+m-1}{d-k+1} - \binom{d-m+1}{d-k+1} + \binom{d-a+1}{d-k+1}.$$

Corollary: $f_k((T_1^{d,d-s})^*) = \Phi_k(d+s, d)$.

(Any other minimizers?)
Corollaries (of proof of Thm. 1)

If $f_{k}(P) = \Phi_{k}(d+s, d)$ for some $1 \leq k \leq d-2$, then

1. Each facet of P has d, $d+s-2$, or $d+s-1$ vertices.
2. Every non-apex vertex is simple.
3. P has $d+2$ facets.
Theorem 2 (X. 2020)

Let P be a d-polytope with $d+s$ vertices where $s \leq d$. If $f_k(P) = \Phi_k(d+s, d)$ for some k with $1 \leq k \leq d-2$, then $P = (T^d_{1,d-s})^*$.
Theorem 2 (X. 2020)

Let P be a d-polytope with $d+s$ vertices where $s \leq d$. If $f_k(P) = \phi_k(d+s, d)$ for some k with $1 \leq k \leq d-2$, then $P = (T^d_{1, d-s})^*$.

Remark (the case of $k = d-1$):
Theorem 2 (X. 2020)

Let P be a d-polytope with $d+s$ vertices where $s \leq d$. If $f_k(P) = \phi_k(d+s,d)$ for some k with $1 \leq k \leq d-2$, then $P = (T^d,d-s)^*$.

Remark (the case of $k = d-1$): Let $2 \leq s \leq d$. If $f_0(P) = d+s$, and $f_{d-1}(P) = d+2$, then $P = (T^{d,d-a}_m)^*$ for some $2 \leq a \leq d$, $1 \leq m \leq \left\lfloor \frac{a}{2} \right\rfloor$, and $m(a-m) = s-1$.
That’s it!

Thank you!
What if \(f_0 > 2d \)?
What if $f_0 > 2d$?

Componentwise MIN. f-vector might NOT exist.

$f_0 = 2d + 1$:

- $P_1 = \text{Stack } (T_{1,d}, d-2)^*$:
 - $P_2 = (T_{2,d}, \frac{d}{2}-2)^*$.

$d = 3$: the "Pentasm"
\[P_1 = \text{Stack} \left(T_i^d, d-2 \right)^* \]
\[P_2 = \left(T_2^d, \frac{a}{2} - 2 \right)^* \]

Pineda-Villavicencio, Ugon, Yost (2019):

For \(d \geq 5 \), \(\min f_i = f_i(P_i) < f_i(P_2) \) (unique!)

But...
- \(P_1 = \text{Stack}\left(T_i^d, d-2 \right)^* \).

- \(P_2 = \left(T_2^d, \frac{d}{2}-2 \right)^* \).

Pineda-Villavicencio, Ugon, Yost (2019):

For \(d \geq 5 \), \(\min f_i = f_i(P_1) < f_i(P_2) \).

But...

For \(d \) even, \(\min f_{d-1} = f_{d-1}(P_2) < f_{d-1}(P_1) \).
\[P_1 = \text{Stack} \left(T_1^{d, d-2} \right)^* \]

\[P_2 = \left(T_2^{d, \frac{d}{2}-2} \right)^* \]

Pineda-Villavicencio, Ugon, Yost (2019):

For \(d \geq 5 \), \(\min f_i = f_i (P_1) < f_i (P_2) \)

But...

For \(d \text{ even} \), \(\min f_{d-1} = f_{d-1} (P_2) < f_{d-1} (P_1) \)
\[P_1 = \text{Stack}(T_1^{d,d-2})^* \]
\[P_2 = (T_2^d, \frac{d}{2}-2)^* \]

Pineda-Villavicencio, Ugon, Yost (2019):

For \(d \geq 5 \), \(\min f_i = f_i(P_1) < f_i(P_2) \)

But...

For \(d \) even, \(\min f_{d-1} = f_{d-1}(P_2) < f_{d-1}(P_1) \).
Thanks again!