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The Genocchi numbers

n 1 2 3 4 5 6

gn 1 1 3 17 155 2073
hn 2 8 56 608 9440 198272∑

n≥1

gn
x2n

(2n)!
= x tan

x

2

Seidel triangle (1877) relates Genocchi numbers gn to median
Genocchi numbers hn.

Barsky-Dumont (1979):∑
n≥1

gnx
n =

∑
n≥1

(n − 1)!n! xn∏n
k=1(1 + k2x)

∑
n≥1

hnx
n =

∑
n≥1

n!(n + 1)!xn∏n
k=1(1 + k(k + 1)x)
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Combinatorial definition - Dumont 1974

n 1 2 3 4 5 6

gn 1 1 3 17 155 2073
hn 2 8 56 608 9440 198272

Genocchi numbers:

gn = |{σ ∈ S2n−2 : i ≤ σ(i) if i is odd; i > σ(i) if i is even}|.

These are called Dumont permutations.

g3 = |{(1, 2)(3, 4), (1, 3, 4, 2), (1, 4, 2)(3)}| = 3.

median Genocchi numbers:

hn = |{σ ∈ S2n+2 : i < σ(i) if i is odd; i > σ(i) if i is even}|.

These are called Dumont derangements.

h1 = |{(1, 2)(3, 4), (1, 3, 4, 2)}| = 2.



New permutation models

σ ∈ S2n is a D-permutation if i ≤ σ(i) whenever i is odd and
i ≥ σ(i) whenever i is even.

{(1, 2)(3, 4), (1, 3, 4, 2), (1, 4, 2)(3), (1, 2)(3)(4),
(1, 4)(2)(3), (3, 4)(1)(2), (1, 3, 4)(2), (1)(2)(3)(4)}

DC2n = {D-cycles on [2n]}, D2n = {D-permutations on [2n]}.

DC2n ⊆ {Dumont derange. on [2n]} ⊆ {Dumont perm. on [2n]} ⊆ D2n.
hn−1 gn+1



New permutation models

σ ∈ S2n is a E-permutation if i > σ(i) implies i is even and σ(i) is
odd.

{(1, 2)(3, 4), (1, 2, 4)(3), (1, 3, 4)(2), (1, 2)(3)(4),
(1, 4)(2)(3), (3, 4)(1)(2), (1, 2, 3, 4), (1)(2)(3)(4)}

EC2n = {E -cycles on [2n]}, E2n = {E -permutations on [2n]}.

Theorem (Lazar, W.)

hn = |D2n| = |E2n|
gn = |DC2n|

Conjecture (Lazar, W.)

gn = |EC2n|
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Chromatic polynomial

Let Γ2n be the bipartite graph on vertex set
{1, 3, . . . , 2n− 1} t {2, 4, . . . , 2n} with an edge between 2i − 1 and
2j for all i ≤ j .
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Let χΓ2n(t) be the chromatic polynomial of Γ2n(t).

n t−1χΓ2n(t) t = −1 t = 0
1 t − 1 −2 −1
2 t3 − 3t2 + 3t − 1 −8 −1
3 t5 − 6t4 + 15t3 − 19t2 + 12t − 3 −56 −3
4 t7 − 10t6 + 45t5 − 115t4 + 177t3 − 162t2 + 81t − 17 −608 −17
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Generating function for the chromatic polynomial

Theorem (Lazar, W.)∑
n≥1

χΓ2n(t) zn =
∑
n≥1

(t)n(t − 1)n z
n∏n

k=1(1− k(t − k)z)
.

where (a)n denotes the falling factorial a(a− 1) · · · (a− n + 1).

Multiply by −t−1 and set t = 0. We get the Barsky-Dumont
generating function for gn:∑

n≥1

gnz
n =

∑
n≥1

(n − 1)!n! zn∏n
k=1(1 + k2z)

.

Multiply by −t−1 and set t = −1. We get the Barsky-Dumont
generating function for hn:∑

n≥1

hnz
n =

∑
n≥1

n!(n + 1)! zn∏n
k=1(1 + k(k + 1)z)

.



Generating function for the chromatic polynomial

Theorem (Lazar, W.)∑
n≥1

χΓ2n(t) zn =
∑
n≥1

(t)n(t − 1)n z
n∏n

k=1(1− k(t − k)z)
.

where (a)n denotes the falling factorial a(a− 1) · · · (a− n + 1).

Corollary:
−(t)−1χΓ2n(t) =

{
hn if t = −1

gn if t = 0
.

Proof steps
1 use the Rota-Whitney NBC theorem to determine the

coefficients of χΓ2n(t) by counting a certain set F2n of forests .
2 construct a bijection from F2n to D2n

3 construct a bijection from D2n to a certain set of “surjective
staircases”

4 use a generating function of Randrianarivony-Zeng (1996) for
an enumerator of surjective staircases with multiple statistics.
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D-permutations

The first two steps yield,

χΓ2n(t) =
∑
σ∈D2n

(−t)cyc(σ),

where cyc(σ) denotes the number of cycles of σ.

Since gn is obtained by setting t = 0 in

−(t)−1χΓ2n(t) =
∑
σ∈D2n

(−t)cyc(σ)−1,

we get gn = |DC2n|
Since hn is obtained by setting t = −1 in

−(t)−1χΓ2n(t) =
∑
σ∈D2n

(−t)cyc(σ)−1,

we get hn = |D2n|
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E-permutations

Recall Γ2n is the bipartite graph on vertex set
{1, 3, . . . , 2n− 1} t {2, 4, . . . , 2n} with an edge between 2i − 1 and
2j for all i ≤ j .

Observation: Γ2n is the incomparability graph of the poset P2n on
[2n] with order relation given by x ≤P2n y if:

x ≤ y and x ≡ y mod 2

x < y , x is even, and y is odd.
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A result of Chung and Graham

A permutation σ of the vertices of a poset P has a P-drop at x if
x >P σ(x).
Example: The cycle (532164) has P6-drops at 5, 3, 6 only. Not 2

Chung-Graham (1995): For any finite poset P,

χinc(P)(t) =

|P|−1∑
k=0

d(P, k)

(
t + k

|P|

)
,

where d(P, k) is the number of permutations of P with exactly k
P-drops.

χinc(P)(−1) =

|P|−1∑
k=0

d(P, k)

(
k − 1

|P|

)
= d(P, 0).

A permutation in σ ∈ S2n has no P2n-drops if for all i ∈ [2n],
i > σ(i) implies i is even and σ(i) is odd.
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E-permutations

Putting all this together, we have

hn = χΓ2n(−1) = |E2n|

Conjecture

The number of D-permutations on [2n] with k cycles equals the
number of E-permutations on [2n] with k cycles for all k.
Consequently

gn = |EC2n|.

We have verified this by computer for n ≤ 6.



Byproduct: expansion in powers of 2

Theorem (Lazar-W.)

hn =
n−1∑
j=1

hn−1,j 2j+1

gn =
n−2∑
j=0

gn−2,j 2j

where

hn,j is the number of D-permutations on [2n] with exactly j
cycles that are not even fixed points,

gn,j is the number of D-permutations on [2n] with exactly j
cycles that are not fixed points

Sundaram (1995) also has an expansion for gn in powers of 2.



Some other geometric models and refinements

Sundaram (1995): Möbius invariant of poset of partitions of
[2n] with an even number of blocks equals (2n − 1)!gn

Feigin (2011): Poincaré polynomial of a certain degenerate
flag variety refines the normalized median Genocchi numbers
hn

2n−1 .

Hetyei (2017): Number of regions in the homogenized Linial
arrangement equals hn.

Lazar,W. (2019): Type B and Dowling analogs: hn(m) and
gn(m)

Lazar (2020): Generalization to other Ferrers graphs




