Decompositions of Ehrhart h^*-polynomials for rational polytopes

Andrés R. Vindas Meléndez
Department of Mathematics
University of Kentucky

AMS Sectional
12-September-2020
People

Matthias Beck
(SF State & FU Berlin)

Benjamin Braun
(Univ. of Kentucky)

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1247392.
Let \(P \) be a rational \(d \)-polytope in \(\mathbb{R}^d \), i.e., convex hull of finitely many points in \(\mathbb{Q}^d \).

For a positive integer \(t \), let \(L_P(t) \) denote the number of integer lattice points in \(tP \).

Theorem: (Ehrhart 1962) Given a rational polytope \(P \), the counting function \(L_P(t) := |tP \cap \mathbb{Z}^d| \) is a quasipolynomial of the form

\[
\text{vol}(P) t^d + k_{d-1}(t)t^{d-1} + \cdots + k_1(t)t + k_0(t),
\]

where \(k_0(t), k_1(t), \ldots, k_{d-1}(t) \) are periodic functions in \(t \).

We call \(L_P(t) \) the Ehrhart quasipolynomial of \(P \), and each period of \(k_0(t), k_1(t), \ldots, k_{d-1}(t) \) divides the denominator \(q \) of \(P \), which is the least common multiple of all its vertex coordinate denominators.
Let P to be a rational d-polytope in \mathbb{R}^d, i.e., convex hull of finitely many points in \mathbb{Q}^d.

Theorem: (Ehrhart 1962) Given a rational polytope P, the counting function $L_P(t) := |tP \cap \mathbb{Z}^d|$ is a quasipolynomial of the form

$$
vol(P) t^d + k_{d-1}(t) t^{d-1} + \cdots + k_1(t) t + k_0(t),
$$

where $k_0(t), k_1(t), \ldots, k_{d-1}(t)$ are periodic functions in t. We call $L_P(t)$ the Ehrhart quasipolynomial of P, and each period of $k_0(t), k_1(t), \ldots, k_{d-1}(t)$ divides the denominator q of P, which is the least common multiple of all its vertex coordinate denominators.
Let P to be a **rational** d-polytope in \mathbb{R}^d, i.e., convex hull of finitely many points in \mathbb{Q}^d.

For a positive integer t, let $L_P(t)$ denote the number of integer lattice points in tP.
Main Characters: (Rational) Polytopes!

- Let P to be a rational d-polytope in \mathbb{R}^d, i.e., convex hull of finitely many points in \mathbb{Q}^d.
- For a positive integer t, let $L_P(t)$ denote the number of integer lattice points in tP.

Theorem: (Ehrhart 1962) Given a rational polytope P, the counting function $L_P(t) := |tP \cap \mathbb{Z}^d|$ is a quasipolynomial of the form

$$\text{vol}(P) t^d + k_{d-1}(t) t^{d-1} + \cdots + k_1(t) t + k_0(t),$$

where $k_0(t), k_1(t), \ldots, k_{d-1}(t)$ are periodic functions in t.
Main Characters: (Rational) Polytopes!

- Let P to be a rational d-polytope in \mathbb{R}^d, i.e., convex hull of finitely many points in \mathbb{Q}^d.
- For a positive integer t, let $L_P(t)$ denote the number of integer lattice points in tP.

Theorem: (Ehrhart 1962) Given a rational polytope P, the counting function $L_P(t) := |tP \cap \mathbb{Z}^d|$ is a quasipolynomial of the form

$$vol(P)t^d + k_{d-1}(t)t^{d-1} + \cdots + k_1(t)t + k_0(t),$$

where $k_0(t), k_1(t), \ldots, k_{d-1}(t)$ are periodic functions in t. We call $L_P(t)$ the **Ehrhart quasipolynomial** of P, and each period of $k_0(t), k_1(t), \ldots, k_{d-1}(t)$ divides the **denominator** q of P, which is the least common multiple of all its vertex coordinate denominators.
Ehrhart Quasipolynomials

A quasipolynomial $L_P(t)$ is a function $Z \to \mathbb{R}$ of the form

$$L_P(t) = k_d(t) t^d + \cdots + k_1(t) t + k_0(t),$$

where k_0, \ldots, k_d are periodic functions in the integer variable t.

Alternatively, for a quasipolynomial, there exist a positive integer q and polynomials f_0, \ldots, f_{p-1}, such that

$$L_P(t) = \begin{cases} f_0(t) & \text{if } t \equiv 0 \mod q \\ f_1(t) & \text{if } t \equiv 1 \mod q \\ \vdots & \\ f_{p-1}(t) & \text{if } t \equiv q-1 \mod q \end{cases}.$$
A quasipolynomial \(L_P(t) \) is a function \(\mathbb{Z} \rightarrow \mathbb{R} \) of the form

\[
L_P(t) = k_d(t)t^d + \cdots + k_1(t)t + k_0(t),
\]

where \(k_0, \cdots, k_d \) are periodic functions in the integer variable \(t \).
Ehrhart Quasipolynomials

A quasipolynomial $L_P(t)$ is a function $\mathbb{Z} \to \mathbb{R}$ of the form

$$L_P(t) = k_d(t)t^d + \cdots + k_1(t)t + k_0(t),$$

where k_0, \cdots, k_d are periodic functions in the integer variable t.

Alternatively, for a quasipolynomial, there exist a positive integer q and polynomials f_0, \ldots, f_{p-1}, such that

$$L_P(t) = \begin{cases}
 f_0(t) & \text{if } t \equiv 0 \mod q \\
 f_1(t) & \text{if } t \equiv 1 \mod q \\
 \vdots & \\
 f_{p-1}(t) & \text{if } t \equiv q - 1 \mod q.
\end{cases}$$
The Ehrhart series is the rational generating function

$$E_{\text{hr}}(P; z) := \sum_{t \geq 0} L_P(t) z^t = h^\ast(P; z) (1 - z^q)^{-1},$$

where $h^\ast(P; z)$ is a polynomial of degree less than $q(d + 1)$ called the h^\ast-polynomial of P.
The *Ehrhart series* is the rational generating function

\[\text{Ehr}(P; z) := \sum_{t \geq 0} L_P(t)z^t = \frac{h^*(P; z)}{(1 - z^q)^{d+1}}, \]

where \(h^*(P; z) \) is a polynomial of degree less than \(q(d + 1) \) called the \(h^* \)-polynomial of \(P \).
Let \(P = \text{conv} \{ (-\frac{1}{2}, 1), (-\frac{1}{2}, -1), (\frac{1}{2}, 1), (\frac{1}{2}, -1) \} \).
Let $P = \text{conv}\{(\frac{-1}{2}, 1), (\frac{-1}{2}, -1), (\frac{1}{2}, 1), (\frac{1}{2}, -1)\}$.
Ehrhart Theory of Rational Polytopes

Let $P = \text{conv}\{ \left(\frac{-1}{2}, 1\right), \left(\frac{-1}{2}, -1\right), \left(\frac{1}{2}, 1\right), \left(\frac{1}{2}, -1\right) \}$.
Let $P = \text{conv}\{(\frac{-1}{2}, 1), (\frac{-1}{2}, -1), (\frac{1}{2}, 1), (\frac{1}{2}, -1)\}$.
Let $P = \text{conv}\{(\frac{-1}{2}, 1), (\frac{-1}{2}, -1), (\frac{1}{2}, 1), (\frac{1}{2}, -1)\}$.
Ehrhart Theory of Rational Polytopes

Let $P = \text{conv}\{(\frac{-1}{2}, 1), (\frac{-1}{2}, -1), (\frac{1}{2}, 1), (\frac{1}{2}, -1)\}$.

$L_P(t) = \begin{cases} 2t^2 + 3t + 1 & \text{when } t \text{ is even}, \\ 2t^2 + t & \text{when } t \text{ is odd}. \end{cases}$
Ehrhart Theory of Rational Polytopes

Let $P = \text{conv}\{(-\frac{1}{2}, 1), (-\frac{1}{2}, -1), (\frac{1}{2}, 1), (\frac{1}{2}, -1)\}$.

$L_P(t) = \begin{cases}
2t^2 + 3t + 1 & \text{when } t \text{ is even,} \\
2t^2 + t & \text{when } t \text{ is odd.}
\end{cases}$

$\text{Ehr}(P; z) = \sum_{t \geq 0} L_P(t)z^t$

$= \sum_{t \geq 0} (2t^2 + 3t + 1)z^t + \sum_{t \geq 1} (2t^2 + t)z^t$

$= \frac{3z^4 + 12z^2 + 1}{(1 - z^2)^3} + \frac{z^5 + 12z^3 + 3z}{(1 - z^2)^3}$

$= \frac{z^5 + 3z^4 + 12z^3 + 12z^2 + 3z + 1}{(1 - z^2)^3}$,
Theorem: (Ehrhart–Macdonald Reciprocity, 1971)

Let P be a rational polytope. Then

$$L_P(-t) = (-1)^d L_P \circ (t).$$

Similarly, $Ehr(P; 1z) = (-1)^{d+1} Ehr(P \circ z)$.

Theorem: (Stanley's Non-negativity Result, 1980)

For a rational d-polytope with $Ehr(P; z) = h^\ast(P; z)(1 - zq)^d$, the coefficients of the h^\ast-polynomial are non-negative integers, i.e., $h^\ast_j \geq 0$.

Theorem: (Stanley's Monotonicity Result, 1993)

For $P \subseteq Q$, where qP and qQ are integral for some $q \in \mathbb{Z} > 0$, $h^\ast(P) \leq h^\ast(Q)$.
Theorem: (Ehrhart–Macdonald Reciprocity, 1971)

Let P be a rational polytope. Then $L_P(-t) = (-1)^d L_{P^o}(t)$. Similarly, $\text{Ehr}(P; \frac{1}{z}) = (-1)^{d+1} \text{Ehr}(P^o; z)$.
Theorem: (Ehrhart–Macdonald Reciprocity, 1971)
Let P be a rational polytope. Then $L_P(-t) = (-1)^d L_{P^o}(t)$.
Similarly, $\text{Ehr} \left(P; \frac{1}{z} \right) = (-1)^{d+1} \text{Ehr}(P^o; z)$.

Theorem: (Stanley’s Non-negativity Result, 1980)
For a rational d-polytope with $\text{Ehr}(P; z) = \frac{h^*(P; z)}{(1-z^q)^{d+1}}$, the coefficients of the h^*-polynomial are non-negative integers, i.e., $h_j^* \geq \mathbb{Z}_{\geq 0}$.
Ehrhart Theory of Rational Polytopes

Theorem: (Ehrhart–Macdonald Reciprocity, 1971)
Let P be a rational polytope. Then $L_P(-t) = (-1)^d L_{P^o}(t)$. Similarly, $Ehr(P; \frac{1}{z}) = (-1)^{d+1} Ehr(P^o; z)$.

Theorem: (Stanley’s Non-negativity Result, 1980)
For a rational d-polytope with $Ehr(P; z) = \frac{h^*(P; z)}{(1-z^q)^{d+1}}$, the coefficients of the h^*-polynomial are non-negative integers, i.e., $h^*_j \geq \mathbb{Z}_{\geq 0}$.

Theorem: (Stanley’s Monotonicity Result, 1993) For $P \subseteq Q$, where qP and qQ are integral for some $q \in \mathbb{Z}_{>0}$, $h^*(P) \leq h^*(Q)$.
Goals

1. Present a generalization of a decomposition of the h^*-polynomial for lattice polytopes due to Betke and McMullen (1985).
 (i) Use this decomposition to provide another proof of Stanley’s Monotonicity Result.

2. Present a generalization of the h^*-polynomial for lattice polytopes due to Stapledon (2009).
 (i) Application of this decomposition.
A rational pointed simplicial cone is a set of the form

\[K(W) = \left\{ \sum_{i=1}^{n} \lambda_i w_i : \lambda_i \geq 0 \right\}, \]

where \(W := \{w_1, \ldots, w_n\} \) is a set of linearly independent vectors in \(\mathbb{Z}^d \).
A rational pointed simplicial cone is a set of the form

$$K(W) = \left\{ \sum_{i=1}^{n} \lambda_i w_i : \lambda_i \geq 0 \right\},$$

where $W := \{w_1, \ldots, w_n\}$ is a set of linearly independent vectors in \mathbb{Z}^d.

Define the open parallelepiped associated with $K(W)$ as

$$\text{Box}(W) := \left\{ \sum_{i=1}^{n} \lambda_i w_i : 0 < \lambda_i < 1 \right\}.$$
A rational pointed simplicial cone is a set of the form
\[K(W) = \left\{ \sum_{i=1}^{n} \lambda_i w_i : \lambda_i \geq 0 \right\}, \]
where \(W := \{w_1, \ldots, w_n\} \) is a set of linearly independent vectors in \(\mathbb{Z}^d \).

Define the open parallelepiped associated with \(K(W) \) as
\[\text{Box}(W) := \left\{ \sum_{i=1}^{n} \lambda_i w_i : 0 < \lambda_i < 1 \right\}. \]

Let \(u : \mathbb{R}^d \to \mathbb{R} \) denote the projection onto the last coordinate. We then define the box polynomial as
\[B(W; z) := \sum_{v \in \text{Box}(W) \cap \mathbb{Z}^d} z^{u(v)}. \]
Example:

Let $W = \{(1,3), (2,3)\}$. Then $\text{Box}(W) = \{\lambda_1 (1,3) + \lambda_2 (2,3) : 0 < \lambda_1, \lambda_2 < 1\}$.

Thus, $\text{Box}(W) \cap \mathbb{Z}_2 = \{(1,2), (2,4)\}$ and its associated box polynomial is $B(W; z) = z^2 + z^4$.
Example: Let $W = \{(1,3), (2,3)\}$. Then

$$\text{Box}(W) = \{\lambda_1(1,3) + \lambda_2(2,3) : 0 < \lambda_1, \lambda_2 < 1\}.$$
Example: Let $\mathbf{W} = \{(1, 3), (2, 3)\}$. Then

$$\text{Box}(\mathbf{W}) = \{\lambda_1(1, 3) + \lambda_2(2, 3) : 0 < \lambda_1, \lambda_2 < 1\}.$$
Example: Let $W = \{(1, 3), (2, 3)\}$. Then

$$\text{Box}(W) = \{\lambda_1(1, 3) + \lambda_2(2, 3) : 0 < \lambda_1, \lambda_2 < 1\}.$$
Set-Up and Notation

Example: Let $\mathbf{W} = \{(1, 3), (2, 3)\}$. Then

$$\text{Box}(\mathbf{W}) = \{\lambda_1(1, 3) + \lambda_2(2, 3) : 0 < \lambda_1, \lambda_2 < 1\}.$$

Thus,

$$\text{Box}(\mathbf{W}) \cap \mathbb{Z}^2 = \{(1, 2), (2, 4)\}$$

and its associated box polynomial is

$$B(\mathbf{W}; z) = z^2 + z^4.$$
Set-Up and Notation

- Define the \textit{fundamental parallelepiped} $\Pi(\mathbf{W})$ to be the half-open variant of $\text{Box}(\mathbf{W})$, namely

$$
\Pi(\mathbf{W}) := \left\{ \sum_{i=1}^{n} \lambda_i \mathbf{w}_i : 0 \leq \lambda_i < 1 \right\}.
$$
Define the **fundamental parallelepiped** $\Pi(\mathbf{W})$ to be the half-open variant of $\text{Box}(\mathbf{W})$, namely

$$
\Pi(\mathbf{W}) := \left\{ \sum_{i=1}^{n} \lambda_i \mathbf{w}_i : 0 \leq \lambda_i < 1 \right\}.
$$
For a rational polytope $P \subset \mathbb{R}^d$ with vertices $v_1, \ldots, v_n \in \mathbb{Q}^d$, we lift the vertices into \mathbb{R}^{d+1} by appending a 1 as the last coordinate. Then the cone of P is

$$\text{cone}(P) = \left\{ \sum_{i=1}^{n} \lambda_i (v_i, 1) : \lambda_i \geq 0 \right\}.$$
For a rational polytope $P \subset \mathbb{R}^d$ with vertices $v_1, \ldots, v_n \in \mathbb{Q}^d$, we lift the vertices into \mathbb{R}^{d+1} by appending a 1 as the last coordinate. Then the cone of P is

$$\text{cone}(P) = \left\{ \sum_{i=1}^{n} \lambda_i (v_i, 1) : \lambda_i \geq 0 \right\}.$$
Set-Up and Notation

A **triangulation** T of a d-polytope P is a subdivision of P into simplices (of all dimensions) that is closed under taking faces.
Set-Up and Notation

- A *triangulation* T of a d-polytope P is a subdivision of P into simplices (of all dimensions) that is closed under taking faces.
Set-Up and Notation

- A *triangulation* T of a d-polytope P is a subdivision of P into simplices (of all dimensions) that is closed under taking faces.

- If all vertices of T are rational points, define the *denominator* of T to be the least common multiple of all vertex coordinate denominators of the faces of T.

![Diagram of a triangulation]

Andrés R. Vindas Meléndez (U. of Kentucky) Decompositions of $h^*(P; z)$ 12-September-2020 14 / 29
Set-Up and Notation

For each $\Delta \in T$, we define the h-polynomial of Δ with respect to T as

$$h_T(\Delta; z) := (1 - z)^{-\dim(\Delta)} \sum_{\Delta \subseteq \Phi \in T} (z^1 - z)^{\dim(\Phi) - \dim(\Delta)},$$

where the sum is over all simplices $\Phi \in T$ containing Δ.

For a simplex Δ with denominator p, let W be the set of integral ray generators of cone(Δ) at height p. We define the h^*-polynomial of Δ as the generating function of the last coordinate of integer points in $\Pi(W) := \Pi(\Delta)$, that is,

$$h^*(\Delta; z) = \sum_{v \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{u(v)}.$$
For each $\Delta \in T$, we define the h-polynomial of Δ with respect to T as

$$h_T(\Delta; z) := (1 - z)^{d - \dim(\Delta)} \sum_{\Delta \subseteq \Phi \in T} \left(\frac{z}{1 - z} \right)^{\dim(\Phi) - \dim(\Delta)},$$

where the sum is over all simplices $\Phi \in T$ containing Δ.
For each $\Delta \in T$, we define the h-polynomial of Δ with respect to T as

$$h_T(\Delta; z) := (1 - z)^{d - \dim(\Delta)} \sum_{\Delta \subseteq \Phi \in T} \left(\frac{z}{1 - z} \right)^{\dim(\Phi) - \dim(\Delta)},$$

where the sum is over all simplices $\Phi \in T$ containing Δ.

For a simplex Δ with denominator p, let W be the set of integral ray generators of $\text{cone}(\Delta)$ at height p. We define the h^*-polynomial of Δ as the generating function of the last coordinate of integer points in $\Pi(W) := \Pi(\Delta)$, that is,

$$h^*(\Delta; z) = \sum_{v \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{u(v)}.$$
Let P be a rational d-polytope and T be a triangulation with denominator q. For an m-simplex $\Delta \in T$, let $W = \{(r_1, q), \ldots, (r_{m+1}, q)\}$, where the (r_i, q) are the integral ray generators for cone(Δ) at height q.

Set $B(W; z) := B(\Delta; z)$ and Box(W) := Box(Δ).

Lemma: Fix a triangulation T with denominator q of a rational d-polytope P and let $\Delta \in T$. Then $h^*(\Delta; z) = \sum_{\Omega \subseteq \Delta} B(\Omega; z)$.
Let P be a rational d-polytope and T be a triangulation with denominator q.
Let P be a rational d-polytope and T be a triangulation with denominator q.

For an m-simplex $\Delta \in T$, let $W = \{(r_1, q), \ldots, (r_{m+1}, q)\}$, where the (r_i, q) are the integral ray generators for cone(Δ) at height q.
Let P be a rational d-polytope and T be a triangulation with denominator q.

For an m-simplex $\Delta \in T$, let $W = \{(r_1, q), \ldots, (r_{m+1}, q)\}$, where the (r_i, q) are the integral ray generators for cone(Δ) at height q.

Set $B(W; z) =: B(\Delta; z)$ and $\text{Box}(W) =: \text{Box}(\Delta)$.
Let P be a rational d-polytope and T be a triangulation with denominator q.

For an m-simplex $\Delta \in T$, let $W = \{(r_1, q), \ldots, (r_{m+1}, q)\}$, where the (r_i, q) are the integral ray generators for cone(Δ) at height q.

Set $B(W; z) =: B(\Delta; z)$ and $\text{Box}(W) =: \text{Box}(\Delta)$.

Lemma: Fix a triangulation T with denominator q of a rational d-polytope P and let $\Delta \in T$. Then $h^*(\Delta; z) = \sum_{\Omega \subseteq \Delta} B(\Omega; z)$.
Theorem: (Beck–Braun–Vindas–Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P, $Ehr(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; zq)(1 - zq)^{d+1}$.

Proof Sketch:
1. Write P as the disjoint union of all open nonempty simplices in T ($Ehr(P; z) = 1 + \sum_{\Delta \in T \setminus \emptyset} Ehr(\Delta \circ; z)$).
2. Use Ehrhart–Macdonald reciprocity.
3. Apply previous lemma.
4. Use the symmetry of box polynomials.
5. Use the definition of the h-polynomial.
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$\text{Ehr}(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q) \frac{1 - z^q}{(1 - z^q)^{d+1}}.$$
Theorem: (Beck–Braun–Vindas–Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$\text{Ehr}(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q) \cdot \frac{(1 - z^q)^{d+1}}{(1 - z)^{d+1}}.$$

Proof Sketch:
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$Ehr(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q) \frac{1}{(1 - z^q)^{d+1}}.$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T ($Ehr(P; z) = 1 + \sum_{\Delta \in T \setminus \emptyset} Ehr(\Delta^\circ; z)$).
Decomposition à la Betke–McMullen

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$Ehr(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q) \frac{1}{(1 - z^q)^{d+1}}.$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T.
- Use Ehrhart–Macdonald reciprocity.

- Use $Ehr(\Delta^\circ; z)$.

Andrés R. Vindas Meléndez (U. of Kentucky)
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$Ehr(P; z) = \frac{\sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q)}{(1 - z^q)^{d+1}}.$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T \((Ehr(P; z) = 1 + \sum_{\Delta \in T \setminus \emptyset} Ehr(\Delta^o; z)). \)
- Use Ehrhart–Macdonald reciprocity.
- Apply previous lemma.
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$\text{Ehr}(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^{q}) \frac{1}{(1 - z^{q})^{d+1}}.$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T ($\text{Ehr}(P; z) = 1 + \sum_{\Delta \in T \setminus \emptyset} \text{Ehr}(\Delta^{\circ}; z)$).
- Use Ehrhart–Macdonald reciprocity.
- Apply previous lemma.
- Use the symmetry of box polynomials.
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$\text{Ehr}(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q) \frac{1}{(1 - zq)^{d+1}}.$$

Proof Sketch:
- Write P as the disjoint union of all open nonempty simplices in T ($\text{Ehr}(P; z) = 1 + \sum_{\Delta \in T \setminus \emptyset} \text{Ehr}(\Delta^\circ; z)$).
- Use Ehrhart–Macdonald reciprocity.
- Apply previous lemma.
- Use the symmetry of box polynomials.
- Use the definition of the h-polynomial.
Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with qP and qQ integral (for minimal possible $q \in \mathbb{Z}_{>0}$). Define the h^*-polynomials via

$$Ehr(P; z) = \frac{h^*(P; z)}{(1 - z^q)^{\dim(P)+1}}$$

and

$$Ehr(Q; z) = \frac{h^*(Q; z)}{(1 - z^q)^{\dim(Q)+1}}.$$

Then $h^*_i(P; z) \leq h^*_i(Q; z)$ coefficient-wise.
Lemma: (Beck–Braun–Vindas–Méndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T' be a triangulation of Q such that T' restricted to P is T. Further, if $\dim(P) < \dim(Q)$, assume that there exists a set of affinely independent vertices v_1, \ldots, v_n of Q outside the affine span of P such that

1. the join $T^* \text{conv}\{v_1, \ldots, v_n\}$ is a subcomplex of T' and
2. $\dim(T^* \text{conv}\{v_1, \ldots, v_n\}) = \dim(Q)$.

For every face $\Omega \in T$, the coefficient-wise inequality $h_T(\Omega; z) \leq h_{T'}(\Omega, z)$ holds.
Lemma: (Beck–Braun–Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Further, if $\dim(P) < \dim(Q)$, assume that there exists a set of affinely independent vertices v_1, \ldots, v_n of Q outside the affine span of P such that

1. the join $\triangledown \text{conv}\{v_1, \ldots, v_n\}$ is a subcomplex of T'
2. $\dim(\triangledown \text{conv}\{v_1, \ldots, v_n\}) = \dim(Q)$.

For every face $\Omega \in T$, the coefficient-wise inequality $h^*(T; z) \leq h^*(T'; z)$ holds.
Lemma: (Beck–Braun–Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T' be a triangulation of Q such that T' restricted to P is T.

For every face $\Omega \in T$, the coefficient-wise inequality $h^*_T(\Omega; z) \leq h^*_{T'}(\Omega, z)$ holds.
Lemma: (Beck–Braun–Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T' be a triangulation of Q such that T' restricted to P is T. Further, if $\dim(P) < \dim(Q)$, assume that there exists a set of affinely independent vertices v_1, \ldots, v_n of Q outside the affine span of P such that
Rational h^*-Monotonicity

Lemma: (Beck–Braun–Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T' be a triangulation of Q such that T' restricted to P is T. Further, if $\dim(P) < \dim(Q)$, assume that there exists a set of affinely independent vertices v_1, \ldots, v_n of Q outside the affine span of P such that

1. the join $T * \text{conv}\{v_1, \ldots, v_n\}$ is a subcomplex of T' and

Andrés R. Vindas Meléndez (U. of Kentucky)

Lemma: (Beck–Braun–Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T' be a triangulation of Q such that T' restricted to P is T. Further, if $\dim(P) < \dim(Q)$, assume that there exists a set of affinely independent vertices v_1, \ldots, v_n of Q outside the affine span of P such that

1. the join $T \ast \text{conv}\{v_1, \ldots, v_n\}$ is a subcomplex of T' and
2. $\dim(P \ast \text{conv}\{v_1, \ldots, v_n\}) = \dim(Q)$.
Lemma: (Beck–Braun–Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T' be a triangulation of Q such that T' restricted to P is T. Further, if $\dim(P) < \dim(Q)$, assume that there exists a set of affinely independent vertices v_1, \ldots, v_n of Q outside the affine span of P such that

1. the join $T \ast \text{conv}\{v_1, \ldots, v_n\}$ is a subcomplex of T' and
2. $\dim(P \ast \text{conv}\{v_1, \ldots, v_n\}) = \dim(Q)$.

For every face $\Omega \in T$, the coefficient-wise inequality $h_T(\Omega; z) \leq h_{T'}(\Omega, z)$ holds.
Rational h^*-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with q_P and q_Q integral. Then $h^*(P; z) \leq h^*(Q; z)$ coefficient-wise.

Proof Sketch: Let P contained in Q and let T be a triangulation of P and T' a triangulation of Q such that $T'|_P$ is T, where if dim(P) < dim(Q) the triangulation T' satisfies the conditions from the previous lemma. By rational Betke–McMullen, $h^*(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^{q_P})$.

Since $P \subseteq Q$, $h^*(Q; z) = \sum_{\Omega \in T'} B(\Omega; z) h_{T'|_P}(\Omega; z^{q_Q}) + \sum_{\Omega \in T' \setminus T} B(\Omega; z) h_{T'}(\Omega; z^{q_Q})$.

By the lemma, the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^{q_Q})$ dominate the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h_{T'}(\Omega; z^{q_Q})$. Therefore, $\sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^{q_P}) \leq \sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^{q_Q}) \leq \sum_{\Omega \in T} B(\Omega; z) h_{T'}(\Omega; z^{q_Q})$.

Andrés R. Vindas Meléndez (U. of Kentucky) 12-September-2020 20 / 29
Rational h^*-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with qP and qQ integral. Then $h^*_i(P; z) \leq h^*_i(Q; z)$ coefficient-wise.

Proof Sketch: Let P contained in Q and let T be a triangulation of P and T' a triangulation of Q such that $T'|_P$ is T, where if $\dim(P) < \dim(Q)$ the triangulation T' satisfies the conditions from the previous lemma. By rational Betke–McMullen, $h^*_i(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z q)$. Since $P \subseteq Q$, $h^*_i(Q; z) = \sum_{\Omega \in T} B(\Omega; z) h(T'|_P(\Omega; z q)) + \sum_{\Omega \in T' \setminus T} B(\Omega; z) h(T'(\Omega; z q))$. By the lemma, the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h(T'|_P(\Omega; z q))$ dominate the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h(T'(\Omega; z q))$. Therefore, $\sum_{\Omega \in T} B(\Omega; z) h(\Omega; z q) \leq \sum_{\Omega \in T} B(\Omega; z) h(T'|_P(\Omega; z q)) \leq \sum_{\Omega \in T} B(\Omega; z) h(T'(\Omega; z q))$.
Rational h^*-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with qP and qQ integral. Then $h^*_i(P; z) \leq h^*_i(Q; z)$ coefficient-wise.

Proof Sketch:
Rational \(h^*\)-Monotonicity

Theorem: (Stanley 1993) Suppose \(P \subseteq Q \) are rational polytopes with \(qP \) and \(qQ \) integral. Then \(h_i^*(P; z) \leq h_i^*(Q; z) \) coefficient-wise.

Proof Sketch:

1. Let \(P \) contained in \(Q \) and let \(T \) be a triangulation of \(P \) and \(T' \) a triangulation of \(Q \) such that \(T'|_P \) is \(T \), where if \(\dim(P) < \dim(Q) \) the triangulation \(T' \) satisfies the conditions from the previous lemma.
Rational h^*-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with qP and qQ integral. Then $h^*_i(P; z) \leq h^*_i(Q; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T' a triangulation of Q such that $T'|_P$ is T, where if $\dim(P) < \dim(Q)$ the triangulation T' satisfies the conditions from the previous lemma.

- By rational Betke–McMullen, $h^*(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q)$.

Andrés R. Vindas Meléndez (U. of Kentucky)
Decompositions of $h^*(P; z)$
Rational h^*-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with qP and qQ integral. Then $h_i^*(P; z) \leq h_i^*(Q; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T' a triangulation of Q such that $T'|_P$ is T, where if $\dim(P) < \dim(Q)$ the triangulation T' satisfies the conditions from the previous lemma.

- By rational Betke–McMullen, $h^*(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q)$.

- Since $P \subseteq Q$, $h^*(Q; z) = \sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^q) + \sum_{\Omega \in T' \setminus T} B(\Omega; z) h_{T'}(\Omega; z^q)$.
Rational h^*-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with qP and qQ integral. Then $h_i^*(P; z) \leq h_i^*(Q; z)$ coefficient-wise.

Proof Sketch:
- Let P contained in Q and let T be a triangulation of P and T' a triangulation of Q such that $T'|_P$ is T, where if $\dim(P) < \dim(Q)$ the triangulation T' satisfies the conditions from the previous lemma.

- By rational Betke–McMullen, $h^*(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q)$.

- Since $P \subseteq Q$, $h^*(Q; z) = \sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^q) + \sum_{\Omega \in T' \setminus T} B(\Omega; z) h_{T'}(\Omega; z^q)$.

- By the lemma, the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^q)$ dominate the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h_{T'}(\Omega; z^q)$.

Andrés R. Vindas Meléndez (U. of Kentucky)
Rational h^*-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with qP and qQ integral. Then $h_i^*(P; z) \leq h_i^*(Q; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T' a triangulation of Q such that $T'|_P$ is T, where if $\dim(P) < \dim(Q)$ the triangulation T' satisfies the conditions from the previous lemma.

- By rational Betke–McMullen, $h^*(P; z) = \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q)$.

- Since $P \subseteq Q$, $h^*(Q; z) = \sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^q) + \sum_{\Omega \in T' \setminus T} B(\Omega; z) h_{T'}(\Omega; z^q)$.

- By the lemma, the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^q)$ dominate the coefficients of $\sum_{\Omega \in T} B(\Omega; z) h_{T'}(\Omega; z^q)$.

- $\sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q) \leq \sum_{\Omega \in T} B(\Omega; z) h_{T'|_P}(\Omega; z^q) \leq \sum_{\Omega \in T} B(\Omega; z) h_{T'}(\Omega; z^q) + \sum_{\Omega \in T' \setminus T} B(\Omega; z) h_{T'}(\Omega; z^q)$.
Decomposition from Boundary Triangulation

Set-up:

Fix a boundary triangulation T with denominator q of a rational d-polytope P. Take $\ell \in \mathbb{Z} > 0$, such that ℓP contains a lattice point a in its interior. Thus $(a, \ell) \in \text{cone}(P) \cap \mathbb{Z}^{d+1}$ is a lattice point in the interior of the cone of P at height ℓ and cone($(a, \ell))$ is the ray through the point (a, ℓ).

We cone over each $\Delta \in T$ and define $W = \{(r_1, q), \ldots, (r_{m+1}, q)\}$ where the (r_i, q) are integral ray generators of cone(Δ) at height q.

Let $B(W; z) = B(\Delta; z)$ and $W' = W \cup \{(a, \ell)\}$ be the set of generators from W together with (a, ℓ) and set cone(Δ') to be the cone generated by W', which associated box polynomial $B(W'; z) = B(\Delta'; z)$.
Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.
Decomposition from Boundary Triangulation

Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.
- Take $\ell \in \mathbb{Z}_{>0}$, such that ℓP contains a lattice point a in its interior. Thus $(a, \ell) \in \text{cone}(P)^{\circ} \cap \mathbb{Z}^{d+1}$ is a lattice point in the interior of the cone of P at height ℓ and $\text{cone}((a, \ell))$ is the ray through the point (a, ℓ).
Decomposition from Boundary Triangulation

Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.
- Take $\ell \in \mathbb{Z}_{>0}$, such that ℓP contains a lattice point a in its interior. Thus $(a, \ell) \in \text{cone}(P)^{\circ} \cap \mathbb{Z}^{d+1}$ is a lattice point in the interior of the cone of P at height ℓ and cone((a, ℓ)) is the ray through the point (a, ℓ).
- We cone over each $\Delta \in T$ and define $W = \{(r_1, q), \ldots, (r_{m+1}, q)\}$ where the (r_i, q) are integral ray generators of cone(Δ) at height q.
Decomposition from Boundary Triangulation

Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.

- Take $\ell \in \mathbb{Z}_{>0}$, such that ℓP contains a lattice point a in its interior. Thus $(a, \ell) \in \text{cone}(P) \cap \mathbb{Z}^{d+1}$ is a lattice point in the interior of the cone of P at height ℓ and $\text{cone}((a, \ell))$ is the ray through the point (a, ℓ).

- We cone over each $\Delta \in T$ and define $W = \{(r_1, q), \ldots, (r_{m+1}, q)\}$ where the (r_i, q) are integral ray generators of $\text{cone}(\Delta)$ at height q.

- Let $B(W; z) =: B(\Delta; z)$ and $W' = W \cup \{(a, \ell)\}$ be the set of generators from W together with (a, ℓ) and set $\text{cone}(\Delta')$ to be the cone generated by W', with associated box polynomial $B(W'; z) =: B(\Delta'; z)$.
Decomposition from Boundary Triangulation

Set-up (continued):

A point \(v \in \text{cone}(\Delta) \) can be uniquely expressed as
\[
v = \sum_{i=1}^{m+1} \lambda_i (r_i, q_i)
\]
for \(\lambda_i \geq 0 \). Define
\[
I(v) := \{ i \in [m+1] : \lambda_i \in \mathbb{Z} \}
\]
and
\[
I(v) := \mathbb{R}^{m+1} \setminus I(v).
\]

For each \(v \in \text{cone}(P) \) we associate two faces \(\Delta(v) \) and \(\Omega(v) \) of \(T \), where \(\Delta(v) \) is chosen to be the minimal face of \(T \) such that \(v \in \text{cone}(\Delta'(v)) \) and we define \(\Omega(v) := \text{conv} \{ r_i q_i : i \in I(v) \} \subseteq \Delta(v) \).
Set-up (continued):

A point \(v \in \text{cone}(\Delta) \) can be uniquely expressed as

\[
v = \sum_{i=1}^{m+1} \lambda_i (r_i, q_i)
\]

for \(\lambda_i \geq 0 \).

Define \(I(v) := \{ i \in [m+1] : \lambda_i \in \mathbb{Z} \} \) and \(I(v) := [m+1] \setminus I(v) \).

For each \(v \in \text{cone}(P) \) we associate two faces \(\Delta(v) \) and \(\Omega(v) \) of \(T \), where \(\Delta(v) \) is chosen to be the minimal face of \(T \) such that \(v \in \text{cone}(\Delta'(v)) \) and we define \(\Omega(v) := \text{conv} \{ r_i q_i : i \in I(v) \} \subseteq \Delta(v) \).
Set-up (continued):

- A point $v \in \text{cone}(\Delta)$ can be uniquely expressed as
 $$v = \sum_{i=1}^{m+1} \lambda_i(r_i, q) \text{ for } \lambda_i \geq 0.$$
Set-up (continued):

- A point $v \in \text{cone}(\Delta)$ can be uniquely expressed as $v = \sum_{i=1}^{m+1} \lambda_i(r_i, q)$ for $\lambda_i \geq 0$.

- Define $I(v) := \{ i \in [m+1] : \lambda_i \in \mathbb{Z} \}$ and $\overline{I(v)} := [m+1] \setminus I(v)$.
Set-up (continued):

- A point \(v \in \text{cone}(\Delta) \) can be uniquely expressed as
 \[v = \sum_{i=1}^{m+1} \lambda_i (r_i, q) \text{ for } \lambda_i \geq 0. \]

- Define \(I(v) := \{ i \in [m+1] : \lambda_i \in \mathbb{Z} \} \) and \(\overline{I(v)} := [m+1] \setminus I(v). \)

- For each \(v \in \text{cone}(P) \) we associate two faces \(\Delta(v) \) and \(\Omega(v) \) of \(T \), where \(\Delta(v) \) is chosen to be the minimal face of \(T \) such that \(v \in \text{cone}(\Delta'(v)) \) and we define \(\Omega(v) := \text{conv} \left\{ \frac{r_i}{q} : i \in \overline{I(v)} \right\} \subseteq \Delta(v). \)
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Consider a rational d-polytope P that contains an interior point $\frac{a}{\ell}$, where $a \in \mathbb{Z}^d$ and $\ell \in \mathbb{Z}_{>0}$. Then

$$h^*(P; z) = 1 - z\frac{1}{1 - z\ell} \sum_{\Omega \in T} \left(B(\Omega; z) + B(\Omega'; z)
ight) h(\Omega; z\frac{1}{\ell}).$$
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Consider a rational d-polytope P that contains an interior point $\frac{a}{\ell}$, where $a \in \mathbb{Z}^d$ and $\ell \in \mathbb{Z}_{>0}$. Fix a boundary triangulation T of P with denominator q. Then

$$h^*(P; z) = 1 - z^\ell \sum_{\Omega \in T} \left(B(\Omega; z) + B(\Omega'; z) \right) h(\Omega; z^q) \left(1 + z + \cdots + z^\ell - 1 \right)$$
Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Consider a rational \(d \)-polytope \(P \) that contains an interior point \(\frac{a}{\ell} \), where \(a \in \mathbb{Z}^d \) and \(\ell \in \mathbb{Z}_{>0} \). Fix a boundary triangulation \(T \) of \(P \) with denominator \(q \). Then

\[
\begin{align*}
 h^*(P; z) &= \frac{1 - z^q}{1 - z^\ell} \sum_{\Omega \in T} \left(B(\Omega; z) + B(\Omega'; z) \right) h(\Omega; z^q) \\
 &= \frac{1 + z + \cdots + z^{q-1}}{1 + z + \cdots + z^{\ell-1}} \sum_{\Omega \in T} \left(B(\Omega; z) + B(\Omega'; z) \right) h(\Omega; z^q).
\end{align*}
\]
Decomposition from Boundary Triangulation

\[P = [1, 3], [2, 3] \]

Boundary triangulation with denominator 3 \((a, \ell) = (2, 4)\) simplices in \(T\): empty face \(\emptyset\) and vertices \(\Delta_1 = 1, 3\) \(\Delta_2 = 2, 3\).

\[W_1 = \{(1, 3)\} \quad \text{and} \quad W_2 = \{(2, 3)\} \]

For \(v \in \text{cone}(P)\) then the only options for \(\Delta(v)\) to be chosen as a minimal face of \(T\) such that \(v \in \text{cone} \Delta'\) are again to consider \(\emptyset\), \(\Delta_1\), and \(\Delta_2\). In this example, \(\Omega(v) = \Delta(v)\).

\[\Omega \in T \quad \dim(\Omega) B(\Omega; z) B(\Omega' ; z) h(\Omega, z) \]

\[\Delta_1 \quad 0 \quad 0 \quad 0 \quad 1 \]

\[\Delta_2 \quad 0 \quad 0 \quad 0 \quad 1 \]

\[\emptyset \quad -1 \quad 1 \quad z \]

\[h^*(P; z) = 1 - z^3 \quad 1 - z^4 \quad (1 + z^3 + z^2 + z^5) = 1 + z^2 + z^4. \]
Let $P = \left[\frac{1}{3}, \frac{2}{3} \right]$.

Decomposition from Boundary Triangulation
Let $P = \left[\frac{1}{3}, \frac{2}{3} \right]$.

- Boundary triangulation with denominator 3
Decomposition from Boundary Triangulation

Let $P = \left[\frac{1}{3}, \frac{2}{3} \right]$.

- Boundary triangulation with denominator 3
- $(a, \ell) = (2, 4)$
Decomposition from Boundary Triangulation

Let $P = \left[\frac{1}{3}, \frac{2}{3} \right]$.

- Boundary triangulation with denominator 3
- $(a, \ell) = (2, 4)$
- simplices in T: empty face \emptyset and vertices $\Delta_1 = \frac{1}{3}$ and $\Delta_2 = \frac{2}{3}$
Let $P = \left[\frac{1}{3}, \frac{2}{3} \right]$.

- Boundary triangulation with denominator 3
- $(a, \ell) = (2, 4)$
- simplices in T: empty face \emptyset and vertices $\Delta_1 = \frac{1}{3}$ and $\Delta_2 = \frac{2}{3}$
- $W_1 = \{(1, 3)\}$ and $W_2 = \{(2, 3)\}$
Let $P = \left[\frac{1}{3}, \frac{2}{3} \right]$.

- Boundary triangulation with denominator 3
- $\mathbf{(a, \ell)} = (2, 4)$
- Simplices in T: empty face \emptyset and vertices $\Delta_1 = \frac{1}{3}$ and $\Delta_2 = \frac{2}{3}$
- $W_1 = \{(1, 3)\}$ and $W_2 = \{(2, 3)\}$
- For $\mathbf{v} \in \text{cone}(P)$ then the only options for $\Delta(\mathbf{v})$ to be chosen as a minimal face of T such that $\mathbf{v} \in \text{cone} \Delta'(\mathbf{v})$ are again to consider \emptyset, Δ_1, and Δ_2. In this example, $\Omega(\mathbf{v}) = \Delta(\mathbf{v})$.
Let $P = \left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3
- $(a, \ell) = (2, 4)$
- simplices in T: empty face \emptyset and vertices $\Delta_1 = \frac{1}{3}$ and $\Delta_2 = \frac{2}{3}$
- $W_1 = \{(1, 3)\}$ and $W_2 = \{(2, 3)\}$
- For $v \in \text{cone}(P)$ then the only options for $\Delta(v)$ to be chosen as a minimal face of T such that $v \in \text{cone} \Delta'(v)$ are again to consider \emptyset, Δ_1, and Δ_2. In this example, $\Omega(v) = \Delta(v)$.

<table>
<thead>
<tr>
<th>$\Omega \in T$</th>
<th>$\dim(\Omega)$</th>
<th>$B(\Omega; z)$</th>
<th>$B(\Omega'; z)$</th>
<th>$h(\Omega, z^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Δ_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\emptyset</td>
<td>-1</td>
<td>1</td>
<td>z^2</td>
<td>$1 + z^3$</td>
</tr>
</tbody>
</table>
Let $P = \left[\frac{1}{3}, \frac{2}{3} \right]$.

- Boundary triangulation with denominator 3
- $(a, \ell) = (2, 4)$
- Simplices in T: empty face \emptyset and vertices $\Delta_1 = \frac{1}{3}$ and $\Delta_2 = \frac{2}{3}$
- $W_1 = \{(1, 3)\}$ and $W_2 = \{(2, 3)\}$
- For $v \in \text{cone}(P)$ then the only options for $\Delta(v)$ to be chosen as a minimal face of T such that $v \in \text{cone} \Delta'(v)$ are again to consider \emptyset, Δ_1, and Δ_2. In this example, $\Omega(v) = \Delta(v)$.

<table>
<thead>
<tr>
<th>$\Omega \in T$</th>
<th>dim(Ω)</th>
<th>$B(\Omega; z)$</th>
<th>$B(\Omega'; z)$</th>
<th>$h(\Omega, z^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Δ_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\emptyset</td>
<td>-1</td>
<td>1</td>
<td>z^2</td>
<td>$1 + z^3$</td>
</tr>
</tbody>
</table>

$$h^*(P; z) = \frac{1 - z^3}{1 - z^4} \left(1 + z^3 + z^2 + z^5\right)$$

$$= 1 + z^2 + z^4.$$
Proposition: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q and Ehrhart series

$$
Ehr(P; z) = \frac{h^*(P; z)}{(1 - zq)^{d+1}}.
$$

Then $\deg h^*(P; z) = s$ if and only if $(q(d + 1) - s)P$ is the smallest integer dilate of P that contains an interior lattice point.
Theorem: (Beck–Braun–Vindas Meléndez 2020+) Let P be a rational d-polytope with denominator q, and let $s := \deg h^*(P; z)$. Then $h^*(P; z)$ has a unique decomposition $h^*(P; z) = a(z) + z^\ell b(z)$, where $\ell = q(d+1) - s$ and $a(z)$ and $b(z)$ are polynomials with integer coefficients satisfying $a(z) = z^{q(d+1) - 1}a(1/z)$ and $b(z) = z^{q(d+1) - 1 - \ell}b(1/z)$. Moreover, the coefficients of $a(z)$ and $b(z)$ are nonnegative.
Next, we turn our attention to the polynomial

\[
\overline{h^*}(P; z) := \left(1 + z + \cdots + z^{\ell-1}\right) h^*(P; z).
\]
Next, we turn our attention to the polynomial

$$h^*(P; z) := \left(1 + z + \cdots + z^{\ell-1} \right) h^*(P; z).$$

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q, and let $s := \deg h^*(P; z)$. Then $h^*(P; z)$ has a unique decomposition $h^*(P; z) = a(z) + z^{\ell-1}b(z)$, where $\ell = q(d+1) - s$ and $a(z)$ and $b(z)$ are polynomials with integer coefficients satisfying $a(z) = z^{q(d+1)-1}a(z) + 1$ and $b(z) = z^{q(d+1)-1} - \ell b(z) + 1$.

Moreover, the coefficients of $a(z)$ and $b(z)$ are nonnegative.
Next, we turn our attention to the polynomial

\[\overline{h^*}(P; z) := \left(1 + z + \cdots + z^{\ell-1}\right) h^* (P; z). \]

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let \(P \) be a rational \(d \)-polytope with denominator \(q \), and let \(s := \deg h^* (P; z) \). Then \(\overline{h^*}(P; z) \) has a unique decomposition

\[\overline{h^*}(P; z) = a(z) + z^{\ell} b(z), \]

where \(\ell = q(d + 1) - s \) and \(a(z) \) and \(b(z) \) are polynomials with integer coefficients satisfying \(a(z) = z^{q(d+1)-1} a \left(\frac{1}{z} \right) \) and \(b(z) = z^{q(d+1)-1-\ell} b \left(\frac{1}{z} \right) \).
Next, we turn our attention to the polynomial

\[\overline{h^*}(P; z) := \left(1 + z + \cdots + z^{\ell-1}\right) h^*(P; z). \]

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let \(P \) be a rational \(d \)-polytope with denominator \(q \), and let \(s := \deg h^*(P; z) \). Then \(\overline{h^*}(P; z) \) has a unique decomposition

\[\overline{h^*}(P; z) = a(z) + z^{\ell} b(z), \]

where \(\ell = q(d + 1) - s \) and \(a(z) \) and \(b(z) \) are polynomials with integer coefficients satisfying \(a(z) = z^{q(d+1)-1} a\left(\frac{1}{z}\right) \) and \(b(z) = z^{q(d+1)-1-\ell} b\left(\frac{1}{z}\right) \). Moreover, the coefficients of \(a(z) \) and \(b(z) \) are nonnegative.
Theorem: (Beck–Braun–Vindas–Meléndez 2020+) Let P be a rational d-polytope with denominator q, let $s := \deg h^*(P; z)$ and $\ell := q(d + 1) - s$.

The h^*-vector $(h^*0, \ldots, h^*q(d + 1) - 1)$ of P satisfies the following inequalities:

$\sum h^* i + \sum h^* q(d + 1) - 1 - i, i = 0, \ldots, \lfloor q(d + 1) - 1/2 \rfloor - 1,$ \hspace{1cm} (1)

$\sum h^* s + \sum h^* s - i \geq \sum h^* i, i = 0, \ldots, q(d + 1), \hspace{1cm} (2)$
Theorem: (Beck–Braun–Vindas–Meléndez 2020+) Let P be a rational d-polytope with denominator q, let $s := \deg h^*(P; z)$ and $\ell := q(d + 1) - s$. The h^*-vector $(h^*_0, \ldots, h^*_q(d+1)-1)$ of P satisfies the following inequalities:

$$h^*_0 + \cdots + h^*_{i+1} \geq h^*_{q(d+1)-1} + \cdots + h^*_{q(d+1)-1-i}, \quad i = 0, \ldots, \left\lfloor \frac{q(d+1)-1}{2} \right\rfloor - 1,$$

$$h^*_s + \cdots + h^*_{s-i} \geq h^*_0 + \cdots + h^*_i, \quad i = 0, \ldots, q(d + 1) - 1.$$
A lattice polytope is \textit{reflexive} if its dual is also a lattice polytope.

Hibi (1992): A lattice polytope P is the translate of a reflexive polytope if and only if $Ehr(P; 1_z) = (-1)^{d+1}zEhr(P; z)$ as rational functions, that is, $h^*(z)$ is palindromic.

Fiset–Kaspryzk (2008): A rational polytope P whose dual is a lattice polytope has a palindromic h^*-polynomial.

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational polytope containing the origin. The dual of P is a lattice polytope if and only if $h^*(P; z) = a(z) = b(z)$, that is, $b(z) = 0$ in the a/b-decomposition of $h^*(P; z)$.
A lattice polytope is *reflexive* if its dual is also a lattice polytope.
A lattice polytope is *reflexive* if its dual is also a lattice polytope.

Hibi (1992): A lattice polytope P is the translate of a reflexive polytope if and only if $\text{Ehr}(P; \frac{1}{z}) = (-1)^{d+1} z \text{Ehr}(P; z)$ as rational functions, that is, $h^*(z)$ is palindromic.
Rational Reflexive Polytopes

- A lattice polytope is reflexive if its dual is also a lattice polytope.

- Hibi (1992): A lattice polytope P is the translate of a reflexive polytope if and only if $\text{Ehr}(P; \frac{1}{z}) = (-1)^{d+1}z \text{Ehr}(P; z)$ as rational functions, that is, $h^*(z)$ is palindromic.

- Fiset–Kaspryzk (2008): A rational polytope P whose dual is a lattice polytope has a palindromic h^*-polynomial.
A lattice polytope is \textit{reflexive} if its dual is also a lattice polytope.

Hibi (1992): A lattice polytope P is the translate of a reflexive polytope if and only if
\[
\text{Ehr}(P; \frac{1}{z}) = (-1)^{d+1} z \text{Ehr}(P; z)
\]
as rational functions, that is, $h^*(z)$ is palindromic.

Fiset–Kaspryzk (2008): A rational polytope P whose dual is a lattice polytope has a palindromic h^*-polynomial.

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational polytope containing the origin. The dual of P is a lattice polytope if and only if
\[
\overline{h^*}(P; z) = h^*(z) = a(z),
\]
that is, $b(z) = 0$ in the a/b-decomposition of $\overline{h^*}(P; z)$.

The End

¡Gracias!