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Domino tilings in dimension 2

A (2D) domino is a rectangular tile of sides 1 and 2.
Given a quadriculated region, we want to:

I decide whether a tiling exists;

I count the possible tilings;

I classify the possible tilings;

I study the connectivity of the space of tilings by flips.
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Flips

A flip is a local move in which the position of exactly two
dominoes is changed.

When can two tilings of the same region be joined by a finite
sequence of flips? Can the two tilings below?
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Flux

For a planar quadriculated region D ⊂ R2 which is connected but
not simply connected, the flux is computed by counting with sign
dominoes crossing a cut.

Flux is preserved by flips. The two tilings in the figure have
different flux and therefore can not be joined by flips.
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Flux

Theorem A (S.,Tomei,Casarin,Romualdo; extending Thurston)
Consider a planar connected quadriculated region D.
Two domino tilings of D can be joined by a sequence of flips if and
only if they have the same flux.

The proof is based on the concept of height functions.
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Dominoes in dimension 3

A domino in dimension 3 is a parallelepiped with edges 2, 1 e 1,
i.e., is obtained by glueing two unit cubes along a common face.

A good way to draw a tiling is by floors.
The figure shows a tiling of the box [0, 4]× [0, 4]× [0, 4].

For vertical dominoes, only the half contained
in the floor shown to the left is shaded.
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Dimension 3 is hard!

We are interested in the set of tilings of a cubiculated region R.

All questions are much harder for dimension 3 than for dimension 2.

Even an estimate of the number an of tilings of a cubical box of
side 2n is a famous open problem.

lim
n→∞

log(an)

n3
= (??)
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Flips in dimension 3

A flip is performed by removing two dominoes and placing them
back in a different position.
Notice that there are now three planes for the flip.

The figure shows three tilings of the box [0, 4]× [0, 4]× [0, 3]
connected by two flips.

Can we prove a result similar to Theorem A? Maybe.
Is it always possible to join two tilings of a box
by a finite sequence of flips? No!
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There are tilings which admit no flip

It is not always possible to connect two tilings by a sequence of
flips, not even if the region is a box. Some tilings admit no flip.

There are similar examples in larger boxes.

However, such examples appear to be extremely rare.

For two tilings t0, t1 of the same region, write t0 ≈ t1 if there
exists a sequence of flips taking t0 to t1.
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Trits

A trit is performed by removing three dominoes, one in each
possible direction, and placing then back in a different position.

All tilings of the 4× 4× 4 box can be joined by flips and trits.
Is this true for larger boxes?
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The twist of a tiling

We can define the twist of a tiling t of a box,
an integer Tw(t) that:

I remains the same when a flip is performed;

I changes by adding ±1 when a trit is performed
(sign depends on orientation).

We obtain 4Tw(t) by counting (with signs)
pairs of reverse dominoes,
one in the x direction, one in the y direction,
one half-domino of one lies above one half-domino of the other.

Clearly, t0 ≈ t1 implies Tw(t0) = Tw(t1).
(Recall that t0 ≈ t1 denotes that there exists
a sequence of flips taking t0 to t1.
Also, flips do not alter the twist.)
On the other hand, Tw(t0) = Tw(t1) does not imply t0 ≈ t1.
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More about the twist

Rotations preserve twist. Reflections change the sign of the twist.

Tw(t) = +2

Tw(t) = −2

Tw(t) = +1

Tw(t) = −1

Tw(t) = 0

For regions which are not contractible, the twist assumes values in
Z/(d) where d ∈ N = {0, 1, 2, . . .} is a function of the flux
(Z/(0) = Z).
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Questions about the twist

Is the twist the only significant invariant?

In a sense, YES.

Is it true that, except for a few special cases,
Tw(t0) = Tw(t1) implies t0 ≈ t1?
That is, is it true that if two tilings have the same twist
then usually they can be joined by a sequence of flips?

At least in certain cases, YES.
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Normal distribution of the twist

For large boxes, the twist appears to follow a normal distribution.

The figure shows the distribution of the twist
for the box [0, 4]× [0, 4]× [0, 120].
The solid curve is a true gaussian, shown for comparison.
Numbers on the vertical axis shoud be multiplied by 10314.
Theorem B Let D ⊂ R2 be a balanced quadriculated disk
containing a 2× 3 rectangle. Let T be a random tiling of
D × [0,N]. When N →∞, the random variable Tw(T)/

√
N

converges in distribution to a normal distribution centered at 0.
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The box 4× 4× 8
The number of tilings per twist for the box 4× 4× 8:

Tw = 10 → 68

Tw = 9 → 82976

Tw = 8 → 59065698

Tw = 7 → 7479240824

Tw = 6 → 789433905408

Tw = 5 → 62605387849228

Tw = 4 → 3436695516295322

Tw = 3 → 115127111752195716

Tw = 2 → 2276869405291081594

Tw = 1 → 24306062890787668200

Tw = 0 → 121817608970781595564

Tw = −1 → 24306062890787668200

· · ·



The box 4× 4× 12

The number of tilings per twist for the box 4× 4× 12:

Tw = 16 → 1156

Tw = 15 → 1718096

Tw = 14 → 1359674808

· · ·
Tw = 2 → 177875528844177456972540231898

Tw = 1 → 1129767146333207750754653645372

Tw = 0 → 3558901067786216448372677933561

· · ·



Concatenation

Let t0, t1 be tilings of D × [0,N0],D × [0,N1].
We denote by t0 ∗ t1 the concatenation of these two tilings;
t0 ∗ t1 is a tiling of D × [0,N0 + N1].

We always have Tw(t0 ∗ t1) = Tw(t0) + Tw(t1).

For M ∈ 2N, let tvert,M be the vertical tiling of D × [0,M].

The figure shows three tilings of D × [0, 2] for D = [0, 4]2.

The first tiling tvert,2 is vertical.
The other two tilings t0, t1 admit no flip.
It turns out that t0 ∗ tvert,2 ≈ t1 ∗ tvert,2,
i.e., there exists a finite sequence of flips joining
t0 ∗ tvert,2 and t1 ∗ tvert,2.
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Theorem E

(See Extra material for Theorems C, D)

Theorem E Let D = [0, L1]× [0, L2] ⊂ R2 be a balanced
quadriculated rectangle, min{L1, L2} ≥ 3, L1L2 even.

There exists M ∈ 2N such that, for all N,
if t0, t1 are tilings of D × [0,N] and Tw(t0) = Tw(t1) then
t0 ∗ tvert,M ≈ t1 ∗ tvert,M .

Notice that M is a function of D only, not of N.

Given D, what is the smallest possible value of M?
How does M depend on D?
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Given D, what is the smallest possible value of M?
How does M depend on D?
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pN = Prob[(Tw(T0) = Tw(t1)) ∧ (T0 6≈ T1)].

There exists λ < 1 such that pN = o(λN).

Notice that Prob[Tw(T0) = Tw(t1)] tends to 0 as N →∞,
but not exponentially.
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The 4× 4× 4 box

For the 4× 4× 4 box, there are 5051532105 tilings,
split into 93 connected components via flips.

The largest component has 4412646453 tilings.

The next two have 310185960 tilings each.

There are 24 connected components with a single tiling.
Such tilings admit no flip.

Let tvert,2 be the vertical tiling of the 4× 4× 2 box.
Let t0, t1 be tilings of the 4× 4× 4 box.
If Tw(t0) = Tw(t1) then t0 ∗ tvert,2 ≈ t1 ∗ tvert,2.
Compare with Theorem F.
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The 93 connected components of the space of tilings
of the 4× 4× 4 box (via flips)

62 46 84 20 74 66 69 88 89

28 35 57 12 16 21 39 25 31 30 45 51 56 75 77

7 5

11 33 41 44 60 79 2 14 26 40 50 53 81

19 64 70 68 87 91 4 0 6 18 65 73 71 86 90

15 24 38 52 54 82 1 10 34 42 47 59 78

8 3

27 36 58 9 13 22 37 23 32 29 43 49 55 76 80

61 48 83 17 72 63 67 85 92



The 9 large components (5051496105 tilings)

Component Number of tilings Twist
0 4412646453 0
1 310185960 1
2 310185960 -1
8 8237514 2
7 8237514 -2
3 718308 2
5 718308 -2

4, 6 283044 0



The 84 small components (36000 tilings)

Component N Tw
27, 36, 58 2576 3
28, 35, 57 2576 -3

9, 13, 22, 23, 29, 32, 37, 43, 49, 55, 76, 80 618 3
12, 16, 21, 25, 30, 31, 39, 45, 51, 56, 75, 77 618 -3
10, 15, 24, 34, 38, 42, 47, 52, 54, 59, 78, 82 236 1
11, 14, 26, 33, 40, 41, 44, 50, 53, 60, 79, 81 236 -1

48, 61, 83 4 4
46, 62, 84 4 -4

17, 63, 67, 72, 85, 92 1 4
18, 19, 64, 65, 68, 70, 71, 73, 86, 87, 90, 91 1 0

20, 66, 69, 74, 88, 89 1 -4
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Extra material



Height functions (towards Theorem A)

A planar domino tiling can be encoded by a height function.

Draw clockwise and counterclockwise arrows in the squares of D,
following an alternating pattern as in the figure
(and as in a chessboard).
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From a tiling to a height function
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Arrows indicate whether the height function increases or decreases
by 1 along edges which are not covered by dominoes. Along edges
which are covered, the height function decreases or increases by 3.
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Flips and height functions

Notice that when a flip is performed, the height function changes
in one point only.
A flip can be applied at an internal vertex if and only if that vertex
is a local maximum or minimum.
In order to prove Theorem A, look for local maxima.
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Consistency of the construction of height functions
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Different paths yield the same difference.

Indeed, following a closed path, the difference counts 4 times the
number of black squares minus the number of white squares in the
surrounded region.
(Black is counterclockwise, white is clockwise; boundaries are
counterclockwise.)
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The height function along the boundary of D
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The value of the height function along the boundary do not
depend on the tiling.



From height function to tiling

An integer valued function on the set of vertices of squares of D is
a height function if and only if:

I the function has the correct values on the boundary of D;

I the function has the correct values mod 4;

I on adjacent vertices, the function differs by 1 or 3.

There exists a natural bijection between tilings and height
functions.
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(Sketch of) Proof of Theorem A

Consider two height functions h0 and h1.
We want to join the two height functions by
a finite sequence of flips.

Compute the difference h1 − h0.
Assume without loss of generality that h1 − h0 assumes
strictly positive values at some internal vertex or vertices.
Consider the finite set Y of internal vertices where h1 − h0

assumes its maximal value.
Search for the element of Y where h1 assumes the largest value:
this point is a local maximum of h1 (WHY??).
Perform a flip at this point, thus obtaining a height function h2;
repeat.
We thus construct the desired finite sequence of flips,
proving the Theorem.
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Refinements

A cubiculated region is refined by dividing each cube
into 5× 5× 5 smaller cubes.

Why 5? Because 5 ≡ 1 (mod 4).

Refinement also takes tilings to tilings:
each domino is divided into 5× 5× 5 smaller parallel dominoes.

Theorem C (Freire,Klivans,Milet,S.)
Consider two tilings of the same cubiculated region.
Assume they have the same flux and twist.
Then they can be joined by a finite sequence of flips
provided we are allowed to take refinements.
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Short sketch of proof of Theorem C

Consider two tilings t0 and t1 with the same flux and twist.

Consider the difference t1 − t0 as a finite family of oriented curves.

After adding space, construct a quadriculated Seifert surface S
whose boundary is t1 − t0
(this is where the hypothesis of equal flux comes in).

Adjust the tilings so that they are also tilings of S
(this is where the hypothesis of equal twist comes in).

Generalize planar theory to quadriculated surfaces.
Deduce that the desired sequence of flips exists.



Short sketch of proof of Theorem C

Consider two tilings t0 and t1 with the same flux and twist.

Consider the difference t1 − t0 as a finite family of oriented curves.

After adding space, construct a quadriculated Seifert surface S
whose boundary is t1 − t0
(this is where the hypothesis of equal flux comes in).

Adjust the tilings so that they are also tilings of S
(this is where the hypothesis of equal twist comes in).

Generalize planar theory to quadriculated surfaces.
Deduce that the desired sequence of flips exists.



Short sketch of proof of Theorem C

Consider two tilings t0 and t1 with the same flux and twist.

Consider the difference t1 − t0 as a finite family of oriented curves.

After adding space, construct a quadriculated Seifert surface S
whose boundary is t1 − t0
(this is where the hypothesis of equal flux comes in).

Adjust the tilings so that they are also tilings of S
(this is where the hypothesis of equal twist comes in).

Generalize planar theory to quadriculated surfaces.
Deduce that the desired sequence of flips exists.



Short sketch of proof of Theorem C

Consider two tilings t0 and t1 with the same flux and twist.

Consider the difference t1 − t0 as a finite family of oriented curves.

After adding space, construct a quadriculated Seifert surface S
whose boundary is t1 − t0
(this is where the hypothesis of equal flux comes in).

Adjust the tilings so that they are also tilings of S
(this is where the hypothesis of equal twist comes in).

Generalize planar theory to quadriculated surfaces.
Deduce that the desired sequence of flips exists.



Short sketch of proof of Theorem C

Consider two tilings t0 and t1 with the same flux and twist.

Consider the difference t1 − t0 as a finite family of oriented curves.

After adding space, construct a quadriculated Seifert surface S
whose boundary is t1 − t0
(this is where the hypothesis of equal flux comes in).

Adjust the tilings so that they are also tilings of S
(this is where the hypothesis of equal twist comes in).

Generalize planar theory to quadriculated surfaces.
Deduce that the desired sequence of flips exists.



Concatenation and an equivalence relation

Let D ⊂ R2 be a balanced quadriculated disk
containing a 2× 3 rectangle

(so that twist is not trivial).

Let t0, t1 be tilings of D × [0,N0],D × [0,N1].
We denote by t0 ∗ t1 the concatenation of these two tilings;
t0 ∗ t1 is a tiling of D × [0,N0 + N1].
We always have Tw(t0 ∗ t1) = Tw(t0) + Tw(t1).

For M ∈ 2N, let tvert,M be the vertical tiling of D × [0,M].

Let t0, t1 be tilings of D × [0,N].
We write t0 ∼ t1 if there exists M ∈ 2N such that
t0 ∗ tvert,M ≈ t1 ∗ tvert,M .
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Let t0, t1 be tilings of D × [0,N].
We write t0 ∼ t1 if there exists M ∈ 2N such that
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Regular disks

The figure shows three tilings of D × [0, 2] for D = [0, 4]2.

The first tiling tvert is vertical.

The other two tilings t0, t1 admit no flip.
It turns out that there exists a finite sequence of flips joining
t0 ∗ tvert and t1 ∗ tvert. We therefore have t0 ∼ t1.

We say a disk D is regular if
N0 ≡ N1 (mod 2) and Tw(t0) = Tw(t1) imply t0 ∼ t1.

It turns out that D = [0, 4]2 is regular.
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Two theorems

Theorem D A rectangle D = [0, L]× [0,M] (LM even)
is regular if and only if min{L,M} ≥ 3.

What about other quadriculated disks?

Theorem E
Let D ⊂ R2 be a regular disk containing a 2× 3 rectangle.
Then there exists M such that:
if t0, t1 are tilings of D × [0,N] and Tw(t0) = Tw(t1) then
t0 ∗ tvert,M , t1 ∗ tvert,M can be joined by a finite sequence of flips.

Notice that M is a function of D only, not of N.

Given D, what is the smallest possible value of M?
How does M depend on D?
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The complex CD (towards Theorems D, E)

Consider a fixed quadriculated disk D ⊂ R2.

We construct a 2-complex CD.

A plug is a balanced subset of D
(same number of black and white squares).
Let P be the set of plugs: P is the set of vertices of CD.
Let p◦ denote the empty plug.

Let p0, p1 ∈ P be disjoint plugs.
Edges from p0 to p1 are floors, where p0 indicates vertical
dominoes from below and p1 indicates vertical dominoes from
above.

This defines the 1-skeleton of CD.
But we must be careful with edges from p◦ to p◦.
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Tilings as paths in CD

Tilings of RN = D × [0,N] correspond to paths of length N in CD
from p◦ to p◦.

The figure shows a tiling of [0, 4]3 as a sequence of plugs (vertices)
and floors (edges).

Given two tilings t0 and t1 we write t0 ∗ t1 for their concatenation
(as tilings or paths).

More generally, paths of length N from p0 to p1 correspond to
tilings of the region Rp0,p1;0,N .
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The 2-skeleton of the complex CD
We add 2-cells to the complex CD to that tilings differing by a flip
correspond to paths differing by a homotopy.

Horizontal flips correspond to bigons.

p1p0

fa

fb p0 p1 fa fb

Vertical flips correspond to quadrilaterals.

p0 p2

p1

p̃1

f1 f2

f̃1 f̃2
f1 f2 f̃1 f̃2
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Short sketch of proof of Theorem D

We define the domino group to be the fundamental group
GD = π1(CD;p◦).

Combinatorially, two tilings t0 of RN0 and t1 of RN1 define the
same element of GD if and only if t0 ∼ t1.

The disk D is regular if and only if GD ≈ Z⊕ (Z/(2)).
For a given disk D, we have the tools to compute GD.

For D = [0, 2]× [0,M], there exists a surjective map
GD → F2 n Z/(2) (where F2 is a free group),
a group with exponential growth.

Theorem D also claims that D = [0, L]× [0,M] is regular
if min{L,M} ≥ 3.

The cases max{L,M} ≤ 6 follow by long computations.
The general case follows by induction.
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The spine C̃•D of C̃D

For a regular disk D, there exists a simple closed curve
Γ : [0,N]→ CD for which Tw(Γ)/N has a maximal value cD.

Let Γ• : [0,N•]→ CD be a simple closed curve for which

Tw(Γ•)/N• = cD.

The figure shows Γ• for D = [0, 4]2.

Let C̃D be the universal cover of CD.

Let C̃•D ⊂ C̃D be the image of the lift of Γ•: C̃•D is the spine of C̃D.

The spine C̃•D is isometric to R (with vertices in Z).
The inclusion C̃•D ⊂ C̃D is a quasi-isometry.
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Short sketch of proof of Theorem E

Tilings t of R∗ with Tw(t) = t correspond to paths in C̃D
from p◦ to σt(p◦) (σ : C̃D → C̃D is a deck transformation).

Sequences of flips joining paths correspond to
homotopies with fixed endpoints.

The amount of extra vertical space needed is
the length of the longest path in the homotopy.
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Sequences of flips joining paths correspond to
homotopies with fixed endpoints.

The amount of extra vertical space needed is
the length of the longest path in the homotopy.



Short sketch of proof of Theorem E (cont.)

Construct a homotopy between a base path Γ0 and an arbitrary
path Γ1 by constructing intermediate paths Γ s

N+1
.

C̃•D

Γ1

s s + 1

In order to define Γ s
N+1

:

Follow Γ1 up to Γ1(s); then move to the spine C̃•D by the shortest
path; then follow along the spine towards the destination.

The homotopy from Γ s
N+1

to Γ s+1
N+1

involves paths of bounded

length, completing the proof.



Short sketch of proof of Theorem E (cont.)

Construct a homotopy between a base path Γ0 and an arbitrary
path Γ1 by constructing intermediate paths Γ s

N+1
.

C̃•D

Γ1

s s + 1

In order to define Γ s
N+1

:

Follow Γ1 up to Γ1(s); then move to the spine C̃•D by the shortest
path; then follow along the spine towards the destination.

The homotopy from Γ s
N+1

to Γ s+1
N+1

involves paths of bounded

length, completing the proof.



Short sketch of proof of Theorem E (cont.)

Construct a homotopy between a base path Γ0 and an arbitrary
path Γ1 by constructing intermediate paths Γ s

N+1
.

C̃•D

Γ1

s s + 1

In order to define Γ s
N+1

:

Follow Γ1 up to Γ1(s); then move to the spine C̃•D by the shortest
path; then follow along the spine towards the destination.

The homotopy from Γ s
N+1

to Γ s+1
N+1

involves paths of bounded

length, completing the proof.


