Whitney Numbers for Poset Cones

AMS Central in El Paso, Texas (Online)

Galen Dorpalen-Barry*, joint work with Jang Soo Kim† and Vic Reiner*
September 13, 2020

*University of Minnesota, † Sungkyunkwan University
1. The Problem

2. Posets

3. Main Problem for Type A
The Problem
This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \ldots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$.

Recall...
This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \ldots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$.

Recall...

- Each arrangement \mathcal{A} dissects V into connected components of the complement $V \setminus \bigcup_{i=1}^{m} H_i$ called chambers. We denote the set of chambers of \mathcal{A} by $C(\mathcal{A})$.

Hyperplane Arrangements

This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \ldots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$.

Recall...

- Each arrangement \mathcal{A} dissects V into connected components of the complement $V \setminus \bigcup_{i=1}^{m} H_i$ called chambers. We denote the set of chambers of \mathcal{A} by $\mathcal{C}(\mathcal{A})$.

- The collection $\mathcal{L}(\mathcal{A})$ of nonempty intersection subspaces $X = H_{i_1} \cap H_{i_2} \cap \cdots \cap H_{i_k}$ forms a ranked poset under (reverse) inclusion. We call this the intersection poset of \mathcal{A}.
Hyperplane Arrangements

This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \ldots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$.

Recall...

- Each arrangement \mathcal{A} dissects V into connected components of the complement $V \setminus \bigcup_{i=1}^m H_i$ called chambers. We denote the set of chambers of \mathcal{A} by $\mathcal{C}(\mathcal{A})$.
- The collection $\mathcal{L}(\mathcal{A})$ of nonempty intersection subspaces $X = H_{i_1} \cap H_{i_2} \cap \cdots \cap H_{i_k}$ forms a ranked poset under (reverse) inclusion. We call this the intersection poset of \mathcal{A}.
- Every lower interval $[V, X] := \{Y \in \mathcal{L}(\mathcal{A}) : V \leq Y \leq X\}$ of $\mathcal{L}(\mathcal{A})$ forms a geometric lattice. In particular, each such $[V, X]$ is a ranked poset, with rank function given by the codimension $\text{codim}(X) := n - \dim(X)$.
Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).
Definition (Cone)

A *cone* \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A}.

<table>
<thead>
<tr>
<th>4</th>
<th>10x254</th>
<th>Cones in an Arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>228</td>
<td>Definition (Cone)</td>
</tr>
<tr>
<td>44</td>
<td>206</td>
<td>A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A}.</td>
</tr>
</tbody>
</table>
Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A}.

Example

Let’s consider a cone \mathcal{K} defined by H_4 and H_5 in

![Diagram showing hyperplanes H_1, H_2, H_3, H_4, and H_5 intersecting to form a cone]

H_1, H_2, H_3, H_4, H_5
Cones in an Arrangement

Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A}.

Example

Let’s consider a cone \mathcal{K} defined by H_4 and H_5 in

![Diagram showing the intersection of half spaces defined by H_1, H_3, H_4, H_5, and H_2.]
Cones in an Arrangement

As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The chambers of \mathcal{K} are the chambers $C(\mathcal{K}) \subseteq C(\mathcal{A})$ strictly contained in \mathcal{K}.

2. The nonempty intersections $L(int(\mathcal{K})) \subseteq L(int(\mathcal{A}))$ strictly contained in \mathcal{K} are called interior intersections of \mathcal{K}.
As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The *chambers of* \mathcal{K} are the chambers $C(\mathcal{K}) \subseteq C(\mathcal{A})$ strictly contained in \mathcal{K}.
As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The *chambers of* \mathcal{K} *are* the chambers $C(\mathcal{K}) \subseteq C(\mathcal{A})$ *strictly contained in* \mathcal{K}.
2. The nonempty intersections $\mathcal{L}^{\text{int}}(\mathcal{K}) \subseteq \mathcal{L}(\mathcal{A})$ *strictly contained in* \mathcal{K} are called *interior intersections of* \mathcal{K}.
Cones in an Arrangement

As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The *chambers of* \mathcal{K} *are the chambers* $C(\mathcal{K}) \subseteq C(\mathcal{A})$ *strictly contained in* \mathcal{K}.
2. The nonempty intersections $L^{\text{int}}(\mathcal{K}) \subseteq L(\mathcal{A})$ *strictly contained in* \mathcal{K} *are called* interior intersections *of* \mathcal{K}.
As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The *chambers of \mathcal{K}* are the chambers $C(\mathcal{K}) \subseteq C(\mathcal{A})$ strictly contained in \mathcal{K}.
2. The nonempty intersections $L^{\text{int}}(\mathcal{K}) \subseteq L(\mathcal{A})$ strictly contained in \mathcal{K} are called *interior intersections of \mathcal{K}*.

Example

![Diagram showing chambers and intersections of a cone in an arrangement](image)
Zaslavsky’s Theorem for cones

Theorem (Zaslavsky’s Theorem for Cones)

For a cone K of an arrangement A with intersection poset $L^{\text{int}}(K)$, we have

$$\# C(K) = \sum_{X \in L^{\text{int}}(K)} |\mu(V, X)| = \sum_{k=0}^{n} c_k(K)$$

where $\mu(V, X)$ denotes the Möbius function of $L^{\text{int}}(K)$ and \{ $c_k(K)$ \} are the *Whitney numbers of the cone* K.

In other words $\# C(K) = [\text{Poin}(K, t)]_{t=1}$, where $\text{Poin}(K, t)$ is the Poincaré polynomial of K, defined by

$$\text{Poin}(K, t) := \sum_{k=0}^{n} c_k(K) t^k.$$
Theorem (Zaslavsky’s Theorem for Cones)

For a cone \mathcal{K} of an arrangement \mathcal{A} with intersection poset $\mathcal{L}^{\text{int}}(\mathcal{K})$, we have

$$\#C(\mathcal{K}) = \sum_{X \in \mathcal{L}^{\text{int}}(\mathcal{K})} |\mu(V, X)| = \sum_{k=0}^{n} c_k(\mathcal{K})$$

where $\mu(V, X)$ denotes the Möbius function of $\mathcal{L}^{\text{int}}(\mathcal{K})$ and \{ $c_k(\mathcal{K})$ \} are the Whitney numbers of the cone \mathcal{K}.

In other words $\#C(\mathcal{K}) = [\text{Poin}(\mathcal{K}, t)]_{t=1}$, where $\text{Poin}(\mathcal{K}, t)$ is the Poincaré polynomial of \mathcal{K}, defined by

$$\text{Poin}(\mathcal{K}, t) := \sum_{k=0}^{n} c_k(\mathcal{K}) t^k.$$
Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).
Hyperplane Arrangements

Example

Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

- The Poincaré polynomial of this arrangement is $\text{Poin}(\mathcal{A}, t) = t^2 + 3t + 2$.
Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

- The Poincaré polynomial of this arrangement is $\text{Poin}(\mathcal{A}, t) = t^2 + 3t + 2$.
- Zaslavsky says: there are $1 + 3 + 2$ chambers.
Example

Let’s consider a cone \mathcal{K} defined by H_4 and H_5 in $H_1 \cap H_2$.
Zaslavsky’s Theorem for cones

Example

Let’s consider a cone \mathcal{C} defined by H_4 and H_5 in

$$H_4 \cap H_5 \subseteq \hat{0}$$
Zaslavsky’s Theorem for cones

Example

Let’s consider a cone \mathcal{K} defined by H_4 and H_5 in

- H_1
- H_3
- H_4
- H_5
- H_2

$H_2 \cap H_3$ +1 1

H_1 -1 H_2 -1 H_3 -1 3

$\hat{0}$ +1 1

Zaslavsky says: there are 1 + 3 + 1 = 5 chambers in this cone.
Zaslavsky’s Theorem for cones

Example

Let’s consider a cone \mathcal{K} defined by H_4 and H_5 in

$H_1 \cap H_2 \cap H_3 \cap H_4 \cap H_5 \overset{0}{\rightarrow} H_2 \cap H_3 \overset{+1}{\rightarrow} 1$

$H_1 \overset{-1}{\rightarrow} H_2 \overset{-1}{\rightarrow} H_3 \overset{-1}{\rightarrow} 3$

$H_1 \overset{+1}{\rightarrow} 0 \overset{+1}{\rightarrow} 1$

Zaslavsky says: there are $1 + 3 + 1 = 5$ chambers in this cone.
Example

Let's consider a cone \mathcal{K} defined by H_4 and H_5 in

![Diagram showing the cone \mathcal{K} defined by H_4 and H_5.]}

Zaslavsky says: there are $1 + 3 + 1 = 5$ chambers in this cone.

Goal: Describe the Poincaré polynomial for cones in Type A.
Posets
The braid arrangement $A_{n-1} = \{H_{ij}\}_{1 \leq i < j \leq n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{ij} = \{(x_1, \ldots, x_n) \in V = \mathbb{R}^n \mid x_i - x_j = 0\}$.

There is an (easy) bijection between posets on $\{1, 2, \ldots, n\}$ and cones in the braid arrangement A_{n-1}, given by sending a poset P to the cone $K_P = \{x \in V = \mathbb{R}^n \mid x_i < x_j \text{ for } i < P j\}$.

For any linear order (permutation) on $\{1, 2, \ldots, n\}$, the chamber K_σ lies in the cone $C(K_P)$ if and only if σ is a linear extension of P.

14
Cones in Type A

- The braid arrangement $A_{n-1} = \{H_{ij}\}_{1 \leq i < j \leq n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{ij} = \{(x_1, \ldots, x_n) \in V = \mathbb{R}^n | x_i - x_j = 0\}$.

- There is an (easy) bijection between posets on $[n] := \{1, 2, \ldots, n\}$ and cones in the braid arrangement A_{n-1}, given by sending a poset P to the cone

$$K_P := \{x \in V = \mathbb{R}^n : x_i < x_j \text{ for } i < P j\}.$$
Cones in Type A

- The braid arrangement $A_{n-1} = \{H_{ij}\}_{1 \leq i < j \leq n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{ij} = \{(x_1, \ldots, x_n) \in V = \mathbb{R}^n | x_i - x_j = 0\}$.

- There is an (easy) bijection between posets on $[n] := \{1, 2, \ldots, n\}$ and cones in the braid arrangement A_{n-1}, given by sending a poset P to the cone

$$K_P := \{x \in V = \mathbb{R}^n : x_i < x_j \text{ for } i <_P j\}.$$

- For any linear order (permutation) on $[n]$, the chamber K_σ lies in the cone $C(K_P)$ if and only σ is a linear extension of P.
Example

Consider the cone of A_{4-1} defined by a disjoint union of two chains.

The linear extensions of P are:

$$\text{LinExt}(P) = \{1234, \ 1324, \ 1342, \ 3124, \ 3142, \ 3412\}$$
We can label the chambers of \mathcal{K}_P by linear extensions of P.

![Diagram of chambers labeled H_{12}, H_{13}, H_{14}, H_{23}, H_{24}, H_{34}]
We can label the chambers of \mathcal{K}_P by linear extensions of P.

Example (A_{4-1})
Main Problem for Type A
Main Problem

Given a poset P on $[n]$, find a statistic $\text{LinExt}(P) \xrightarrow{\text{stat}} \{0, 1, 2, \ldots\}$ interpreting

$$\#\text{LinExt}(P) = \sum_{k \geq 0} c_k(P) = [\text{Poin}(P, t)]_{t=1}$$

as follows:

$$\sum_{\sigma \in \text{LinExt}(P)} t^{\text{stat}(\sigma)} = \sum_{k \geq 0} c_k(P) t^k = \text{Poin}(P, t).$$
Main Problem

Given a poset P on $[n]$, find a statistic $\text{LinExt}(P) \xrightarrow{\text{stat}} \{0, 1, 2, \ldots\}$ interpreting

$$\#\text{LinExt}(P) = \sum_{k \geq 0} c_k(P) = \left[\text{Poin}(P, t)\right]_{t=1}$$

as follows:

$$\sum_{\sigma \in \text{LinExt}(P)} t^{\text{stat}(\sigma)} = \sum_{k \geq 0} c_k(P) t^k = \text{Poin}(P, t).$$

Let’s motivate this with an example...
Example

Let P be an antichain poset on n elements. This corresponds to the full arrangement A_{n-1}. Then

$$1(1 + t)(1 + 2t) \cdots (1 + (n-1)t) = \sum_{\sigma \in \mathfrak{S}_n} t^{n - \# \text{cycles}(\sigma)}$$

$$= \sum_k c(n, k)t^{n-k} = \text{Poin}(P, t)$$
Let P be an antichain poset on n elements. This corresponds to the full arrangement A_{n-1}. Then

$$1 (1 + t)(1 + 2t) \cdots (1 + (n - 1)t) = \sum_{\sigma \in S_n} t^{n - \#\text{cycles}(\sigma)}$$

$$= \sum_k c(n, k) t^{n-k} = \text{Poin}(P, t)$$

We’ll generalize this example using a notion of P-transverse permutations.
Definition (P-transverse Partition)

Given a poset P on $[n]$, we say that a partition π is P-transverse if π corresponds to an intersection interior to the cone \mathcal{K}_P.

Definition (P-transverse Permutation)

Given a poset P on $[n]$, we say that a permutation σ is P-transverse if the set partition obtained by forgetting the order within the cycles is P-transverse.
Definition (P-transverse Partition)

Given a poset P on $[n]$, we say that a partition π is *P-transverse* if π corresponds to an intersection interior to the cone \mathcal{K}_P.

Definition (P-transverse Permutation)

Given a poset P on $[n]$, we say that a permutation σ is *P-transverse* if the set partition obtained by forgetting the order within the cycles is *P-transverse*.
Example

Let P be an antichain poset on n elements. Then all permutations of $[n]$ are P-transverse.
Main Problem for Type A: Motivating Example

Example

Let P be an antichain poset on n elements. Then all permutations of $[n]$ are P-transverse.

Example

Let P be the poset on $[4]$ with $1 < 2$ and $3 < 4$ and no other relations. Then the P-transverse permutations are

$(\cdot), (13), (14), (23), (24), (13)(24)$.
Main Problem for Type A

Given a poset \(P \) on \([n]\), Zaslavsky's theorem implies that

\[
\#\text{LinExt}(P) = \#(P \text{ – transverse permutations}).
\]

Give a combinatorial bijection \(\psi \) between these two sets such that

\[
\sum_{\sigma \in \text{LinExt}(P)} t^{n - \text{cycles}(\psi(\sigma))} = \sum_{k \geq 0} c_k(P) \ t^k = \text{Poin}(P, t).
\]
Main Problem for Type A

Given a poset P on $[n]$, Zaslavsky's theorem implies that

$$\# \text{LinExt}(P) = \# (P - \text{transverse permutations}).$$

Give a combinatorial bijection ψ between these two sets such that

$$\sum_{\sigma \in \text{LinExt}(P)} t^{n - \text{cycles}(\psi(\sigma))} = \sum_{k \geq 0} c_k(P) t^k = \text{Poin}(P, t).$$

We have such a map! Let's give an example of how it works.
Example $\psi : \text{LinExt}(P) \rightarrow \mathcal{G}^{\uparrow}(P)$

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

$$P = \begin{array}{ccc}
\begin{array}{ccc}
& 6 & \\
2 & & 7 \\
1 & & 3
\end{array}
\end{array}$$
Example \(\psi : \text{LinExt}(P) \to \mathcal{S}^\uparrow(P) \)

Example

Take \(\sigma = 1325476 \in \text{LinExt}(P) \) where

\[
P = \begin{array}{c}
6 & 7 \\
2 & 4 & 5 \\
1 & 3 \\
\end{array}
\]

To compute \(\psi(\sigma) \), we cut \(\sigma \) (greedily) into strings which are antichains of \(P \).
Example $\psi : \text{LinExt}(P) \to \mathcal{G}^h(P)$

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

\[P = \begin{array}{ccc}
1 & 3 & \text{Level 1} \\
2 & 4 & \text{Level 2} \\
6 & 7 & \text{Level 3}
\end{array} \]

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

$\sigma = 1325476$.
Example $\psi : \text{LinExt}(P) \rightarrow \mathcal{G}^H(P)$

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

$P = \begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array}$

Level 1

Level 2

Level 3

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

$\sigma = 1325476$.

Say that x in Level k is *essential* if it covers an element of Level $k - 1$. We denote the essential elements with an overline.
Example $\psi : \text{LinExt}(P) \rightarrow \mathcal{G}^h(P)$

Example

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

$P = \begin{array}{ccc}
6 & 7 \\
2 & 4 & 5 \\
1 & 3
\end{array}$

Level 3

Level 2

Level 1

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

$\sigma = \overline{1325476}$

Say that x in Level k is *essential* if it covers an element of Level $k - 1$. We denote the essential elements with an overline.
Example \(\psi : \text{LinExt}(P) \rightarrow \mathcal{G}^h(P) \)

We have \(\sigma = \overline{1325476} \).

Within each level (color block), put a left parenthesis left of each left-to-right maximum among the essential elements:

\[
\sigma = (\overline{1})(\overline{3}25(4)(76}
\]

Adding in the right parenthesis:

\[
\sigma = (1)(3)(25)(4)(76)
\]

Removing the decoration gives

\[
\psi(\sigma) = (1)(3)(25)(4)(76)
\]
Example \(\psi : \text{LinExt}(P) \to \mathcal{G}^+(P) \)

Example

We have \(\sigma = 1325476 \).
Within each level (color block), put a left parenthesis left of each left-to-right maximum among the essential elements:

\[\sigma = (1)(3)(25)(4)76 \]

Adding in the right parenthesis: \(\sigma = (1)(3)(25)(4)(76) \)
Example $\psi : \text{LinExt}(P) \to S^h(P)$

We have $\sigma = 1325476$. Within each level (color block), put a left parenthesis left of each left-to-right maximum among the essential elements:

$$\sigma = (1)(3)(25)(476)$$

Adding in the right parenthesis: $\sigma = (1)(3)(25)(4)(76)$ Removing the decoration gives

$$\psi(\sigma) = (1)(3)(25)(4)(76)$$
Theorem

Given a poset P on $[n]$, not only does ψ give a bijection, but

$$\sum_{\sigma \in \text{LinExt}(P)} t^{n-\text{cycles}(\psi(\sigma))} = \sum_{k \geq 0} c_k(P) t^k = \text{Poin}(P, t).$$
Thanks!
References
