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Chip-firing on graphs

I The classical theory of chip-firing involves a simple game
played on the vertices of a graph, with connections to

I self-organized crticality in statistical physics.

I underlying algebraic structure.

I divisor theory in algebraic geometry.

I Recent books:

I S. Corry and D. Perkinson, Divisors and Sandpiles: An
Introduction to Chip-Firing, AMS, 2017.

I C. Klivans, The Mathematics of Chip-Firing, CRC press, 2018.

I For us: Chip-firing on a graph G says something about
M(G)∗, the dual matroid of the underlying graphic matroid.
What about dual chip-firing?



Chip-firing: The rules

Suppose G is a finite simple graph on vertex set {0, 1, . . . , n} with
specified root vertex 0, and edge set E.

I A configuration of chips is a vector c = (c1, . . . , cn) ∈ Nn.

I A vertex i can fire when ci ≥ deg(u).

I The vertex passes chips to each of its neighbors (one for each
edge connecting it to i), resulting in a new configuration c′.

I A configuration is stable if no vertex can fire.

I The root can fire only when the configuration is stable,
passing a chip to each of its neighbors.



Example



The critical group

I FACT: If G is connected all firings stabilize. Why?

I Study the dynamics - what configurations do we see ‘many
times’?

I Given any configuration there is a unique ‘recurrent’
configuration that one can obtain via stabilization.

I The set of ‘critical configurations’ form an abelian group κ(G)
called the ‘critical group’ of G.



Superstable configurations

I We say c superstable if no set of nonroot vertices can fire
simultaneously.
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I In the above graph, 202 is stable but not superstable.
Superstable configurations are
{000, 100, 010, 001, 200, 002, 101, 111}

I Set of superstable configurations are in a simple bijection with
the set of crticial configurations.

I Superstable configurations have connections to G-parking
functions, Tutte polynomials (Merino), h-vectors, etc.



Some linear algebra

I The dynamics of chip-firing can be encoded in the (reduced)
Laplacian of G, an n× n symmetric matrix that encodes G.
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L̃(G) =

 2 −1 0
−1 3 −1
0 −1 2


I Firing a vertex i corresponds to subtracting the ith row of
L̃(G). Two configurations c and d are equivalent if
d− c ∈ imL̃(G).

I Recovers the critical group as

κ(G) ∼= Zn/imL̃(G)

I As a corollary we see that |κ(G)| is given by det L̃(G) = the
number of spanning trees of G.



Generalized chip-firing

Gabrielov/Dhar generalized this idea to abelian avalanche models.

I Consider an n× n redistribution matrix ∆ where

∆ii > 0 for all i; ∆ij ≤ 0 for all i 6= j.

I A vector h ∈ Zn defines a configuration, and a site i can fire
if hi ≥ ∆ii.

I In this case replace h with h−∆Tei.

I Notions of stable configurations are similar.

I Not all matrices give good firing rules - ∆ is said to be
avalanche finite if any initial configuration and firing sequence
will eventually terminate in a stable configuration.



Generalized chip-firing

Guzmán and Klivans have developed a theory of chip-firing for any
avalanche finite redistribution matrix L.

I Two configurations f and g are equivalent if g − f ∈ imL.

I A configuration is z-superstable if all entries are nonnegative
and no multiset of sites can fire simultaneously.

I GK prove that every equivalence class contains a unique
z-superstable configuration.

I In fact f is z-superstable if and only if f is the unique
minimizer of

min
g∼f ,g≥0

E(g),

where for any configuration f define its energy to be

E(f) = fTLf .



Back to graphs: planarity and dual chip-firing

I If G is a planar graph (with an embedding) what does
chip-firing on the dual graph G∗ mean for G?

I Critical groups agree [Corri-Rossin]! One can check that

κ(G∗) ∼= κ(G)

I We now fire circuits, passing chips according to a rule
determined by how these circuits intersect (depends on an
orientation)



Generalizing to all graphs

I What happens if G is not planar? We no longer have a ‘dual
graph’ but can we still perform ‘dual chip-firing’?

I Yes! Think in terms of matrices and lattices (and use some
intuition from matroids/Gale duality).

I The reduced Laplacian L̃(G) can be computed as

L̃(G) = ∂̃∂̃T

where ∂̃ is the (reduced) incidence matrix of the graph G.

I The rows of ∂̃ form an integer basis for its row space (called
the lattice of integral cuts of G).

I Think of classical chip firing on the set of edges incident to
the nonroot vertices (often called vertex cuts).



Dualizing

I Classical chip-firing is determined by a (certain) integer basis
for the row space of ∂̃.

I For the dual picture we seek an integer basis for the kernel of
∂̃ (called the lattice of integral flows of G).

I For any such basis ι = (f1 . . . fg) let

L∗(G) = ιT ι

denote the dual Laplacian (w/ respect to this choice of basis).

Proposition (essentially Bacher, De La Harpe, Nagnibeda)

For any graph G we have

κ(G) ∼= Zg/imL∗.
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∂̃ =

1 0 0 −1 0
0 1 0 1 −1
0 0 1 0 1

 L̃ = ∂̃∂̃T =

 2 −1 0
−1 3 −1
0 −1 2



ker∂̃ has basis ι =


1 0
−1 −1
0 1
1 0
0 −1

 so that L∗(G) = ιT ι =

[
3 1
1 3

]



Cycle chip-firing

I After fixing a basis ι = {f1, . . . , fg}, the matrix L∗ determines
a potential ‘chip-firing’ rule for these elements.

Definition

For a graph G we say a basis ι = {f1, . . . , fg} is a cycle M -basis if
the matrix L∗ is an avalanche finite redistribution matrix.

I If G admits a cycle M -basis then we have a good notion of
‘chip-firing’ on the elements of ι, with notions of
z-superstable configurations etc.



Easy cases

Proposition

If G is a planar graph then G admits a cycle M -basis

I Embed G in the plane, orient the bounded regions
consistently, and take the corresponding basis vectors.

Proposition

Both K5 and K3,3 admit cycle M -bases.

L∗
=


4 −1 −2 0 0 0
−1 4 0 0 0 −1
−2 0 4 −3 −1 0
0 0 −3 5 0 −1
0 0 −1 0 5 −2
0 −1 0 −1 −2 3





Main result

Theorem

Any graph G admits a cycle M -basis.

I FACT: if L is a square matrix with Lij ≤ 0 for all i 6= j then

L is avalanche finite ⇔ real part eigenvalues of L are positive

(in which case L is a called a (non-singular) M -matrix).

I Recall that L∗ = ιT ι and hence L∗ is positive definite (recall
that L∗ is invertible.

I From this it follows that L∗ will have positive real eigenvalues.
Hence enough to show that the off-diagonals are nonpositive.

Theorem

Suppose {v1, . . . ,vg} is an integral basis for a lattice Λ ⊂ Rd.
Then there exists an integral basis {f1, . . . , fg} for Λ with the
property that fi · fj ≤ 0 for all i 6= j.



z-superstables and more things in bijection with τ(G)

From [GK] we know each equivalence class contains a unique
‘energy-minimizing’ z-configuration.

Proposition

Suppose G has a cycle M -basis with associated dual Laplacian L∗.
Then the number of z-superstable configurations of G is given by
|τ(G)|, the number of spanning trees of G.

I In the classical case the superstable configs have a lot to say
about the graph (external activity, Tutte polynomial, etc.)

I Interpretation here not so clear.



Example

I For the case of the graph K5 (and our example of L∗ from
above) we get 125 elements that form a ‘multicomplex’

I The maximal elements are
{000112, 000211, 010022, 010210, 010300, 020021,
020040, 020111, 021020, 021110, 030101, 100102,
101020, 101110, 130020, 130110, 200021, 200111,
210020, 210110, 300020, 310000}.

I The degree sequence is given by c = (1, 6, 19, 38, 39, 19, 3),
where the number of z-superstable configurations of degree
d− 1 is given by the entry cd.



Circuit M -bases

I Although any graph admits a cycle M -basis the elements in
our basis for ker ∂̃ can have lots of large integers.

I Want to find an M -basis consisting only of circuits: each
entry should be 0,−1, 1, with the the nonzero entries
corresponding to some circuit (simple closed path) of G.

I Such a basis will be called a circuit M -basis.

Proposition

Planar graphs as well as the graphs K5 and K3,3 admit circuit
M -bases.



Further thoughts and open questions

I Main open question: Does any graph admit circuit M -basis?
Perhaps for a class of graphs?

I Restrictions on the size of circuits in a circuit M -basis?
(partial results)

I Find an explicit bijection between the set of z-superstable and
the set τ(G) of spanning trees.

I What do the z-superstable configurations count?

I In the case of classical chip-firing, the number of superstable
configs of degree d are given by the number of spanning trees
with d externally passive edges.

I Notion of activity here?

I More general unimodular matroids?


