Cycle and circuit chip-firing on graphs

Anton Dochtermann
Texas State University

AMS Special Session on Algebraic, Geometric and Topological Combinatorics
September 13, 2020
Coauthors

- This work comes from a Mathworks project at Texas State University from summer 2019.
- Joint work with Eli Meyers, Raghav Samavedam, and Alex Yi (all high school students!)
Chip-firing on graphs

- The classical theory of chip-firing involves a simple game played on the vertices of a graph, with connections to
 - self-organized criticality in statistical physics.
 - underlying algebraic structure.
 - divisor theory in algebraic geometry.

- Recent books:

- For us: Chip-firing on a graph G says something about $\mathcal{M}(G)^*$, the dual matroid of the underlying graphic matroid. What about dual chip-firing?
Suppose G is a finite simple graph on vertex set $\{0, 1, \ldots, n\}$ with specified root vertex 0, and edge set E.

- A configuration of chips is a vector $c = (c_1, \ldots, c_n) \in \mathbb{N}^n$.
- A vertex i can fire when $c_i \geq \deg(u)$.
- The vertex passes chips to each of its neighbors (one for each edge connecting it to i), resulting in a new configuration c'.
- A configuration is stable if no vertex can fire.
- The root can fire only when the configuration is stable, passing a chip to each of its neighbors.
Example
FACT: If G is connected all firings stabilize. Why?

Study the dynamics - what configurations do we see ‘many times’?

Given any configuration there is a unique ‘recurrent’ configuration that one can obtain via stabilization.

The set of ‘critical configurations’ form an abelian group $\kappa(G)$ called the ‘critical group’ of G.
Superstable configurations

- We say a configuration superstable if no set of nonroot vertices can fire simultaneously.

In the above graph, 202 is stable but not superstable. Superstable configurations are:
{000, 100, 010, 001, 200, 002, 101, 111}

- Set of superstable configurations are in a simple bijection with the set of critical configurations.

- Superstable configurations have connections to G-parking functions, Tutte polynomials (Merino), h-vectors, etc.
Some linear algebra

- The dynamics of chip-firing can be encoded in the (reduced) Laplacian of G, an $n \times n$ symmetric matrix that encodes G.

\[
\tilde{L}(G) = \begin{bmatrix}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{bmatrix}
\]

- Firing a vertex i corresponds to subtracting the ith row of $\tilde{L}(G)$. Two configurations c and d are equivalent if $d - c \in \text{im}\tilde{L}(G)$.

- Recovers the critical group as

\[
\kappa(G) \cong \mathbb{Z}^n / \text{im}\tilde{L}(G)
\]

- As a corollary we see that $|\kappa(G)|$ is given by $\det \tilde{L}(G) = \text{the number of spanning trees of } G$.
Generalized chip-firing

Gabrielov/Dhar generalized this idea to *abelian avalanche models*.

- Consider an $n \times n$ *redistribution matrix* Δ where

 \[
 \Delta_{ii} > 0 \text{ for all } i; \quad \Delta_{ij} \leq 0 \text{ for all } i \neq j.
 \]

- A vector $h \in \mathbb{Z}^n$ defines a configuration, and a site i can fire if $h_i \geq \Delta_{ii}$.

- In this case replace h with $h - \Delta^T e_i$.

- Notions of *stable* configurations are similar.

- Not all matrices give good firing rules - Δ is said to be *avalanche finite* if any initial configuration and firing sequence will eventually terminate in a stable configuration.
Generalized chip-firing

Guzmán and Klivans have developed a theory of chip-firing for any avalanche finite redistribution matrix L.

- Two configurations f and g are equivalent if $g - f \in \text{im} L$.
- A configuration is z-superstable if all entries are nonnegative and no multiset of sites can fire simultaneously.
- GK prove that every equivalence class contains a unique z-superstable configuration.
- In fact f is z-superstable if and only if f is the unique minimizer of

$$\min_{g \sim f, g \geq 0} E(g),$$

where for any configuration f define its energy to be

$$E(f) = f^T L f.$$
Back to graphs: planarity and dual chip-firing

- If G is a planar graph (with an embedding) what does chip-firing on the dual graph G^* mean for G?

- Critical groups agree [Corri-Rossin]! One can check that

$$\kappa(G^*) \cong \kappa(G)$$

- We now fire circuits, passing chips according to a rule determined by how these circuits intersect (depends on an orientation)
Generalizing to all graphs

▶ What happens if G is not planar? We no longer have a ‘dual graph’ but can we still perform ‘dual chip-firing’?

▶ Yes! Think in terms of matrices and lattices (and use some intuition from matroids/Gale duality).

▶ The reduced Laplacian $\tilde{\mathcal{L}}(G)$ can be computed as

$$\tilde{\mathcal{L}}(G) = \tilde{\partial} \tilde{\partial}^T$$

where $\tilde{\partial}$ is the (reduced) incidence matrix of the graph G.

▶ The rows of $\tilde{\partial}$ form an integer basis for its row space (called the lattice of integral cuts of G).

▶ Think of classical chip firing on the set of edges incident to the nonroot vertices (often called vertex cuts).
Dualizing

- Classical chip-firing is determined by a (certain) integer basis for the row space of $\tilde{\partial}$.

- For the dual picture we seek an integer basis for the kernel of $\tilde{\partial}$ (called the lattice of integral flows of G).

- For any such basis $\iota = (f_1 \ldots f_g)$ let

$$\mathcal{L}^*(G) = \iota^T \iota$$

denote the dual Laplacian (w/ respect to this choice of basis).

Proposition (essentially Bacher, De La Harpe, Nagnibeda)

For any graph G we have

$$\kappa(G) \cong \mathbb{Z}^g / \text{im}\mathcal{L}^*.$$
\[\tilde{\partial} = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \quad \tilde{\mathcal{C}} = \tilde{\partial} \tilde{\partial}^T = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix} \]

\[\ker \tilde{\partial} \text{ has basis } \iota = \begin{bmatrix} 1 & 0 \\ -1 & -1 \\ 0 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix} \] so that \[\mathcal{L}^*(G) = \iota^T \iota = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \]
After fixing a basis $\iota = \{f_1, \ldots, f_g\}$, the matrix L^* determines a potential ‘chip-firing’ rule for these elements.

Definition

For a graph G we say a basis $\iota = \{f_1, \ldots, f_g\}$ is a cycle M-basis if the matrix L^* is an avalanche finite redistribution matrix.

If G admits a cycle M-basis then we have a good notion of ‘chip-firing’ on the elements of ι, with notions of z-superstable configurations etc.
Easy cases

Proposition

If G is a planar graph then G admits a cycle M-basis

- Embed G in the plane, orient the bounded regions consistently, and take the corresponding basis vectors.

Proposition

Both K_5 and $K_{3,3}$ admit cycle M-bases.

\[
\mathcal{L}^* = \begin{bmatrix}
4 & -1 & -2 & 0 & 0 & 0 \\
-1 & 4 & 0 & 0 & 0 & -1 \\
-2 & 0 & 4 & -3 & -1 & 0 \\
0 & 0 & -3 & 5 & 0 & -1 \\
0 & 0 & -1 & 0 & 5 & -2 \\
0 & -1 & 0 & -1 & -2 & 3 \\
\end{bmatrix}
\]
Main result

Theorem

Any graph G admits a cycle M-basis.

- FACT: if L is a square matrix with $L_{ij} \leq 0$ for all $i \neq j$ then L is avalanche finite \iff real part eigenvalues of L are positive (in which case L is a called a (non-singular) M-matrix).

- Recall that $L^* = \iota^T \iota$ and hence L^* is positive definite (recall that L^* is invertible).

- From this it follows that L^* will have positive real eigenvalues. Hence enough to show that the off-diagonals are nonpositive.

Theorem

Suppose $\{v_1, \ldots, v_g\}$ is an integral basis for a lattice $\Lambda \subset \mathbb{R}^d$.
Then there exists an integral basis $\{f_1, \ldots, f_g\}$ for Λ with the property that $f_i \cdot f_j \leq 0$ for all $i \neq j$.
τ-superstables and more things in bijection with $\tau(G)$

From [GK] we know each equivalence class contains a unique ‘energy-minimizing’ τ-configuration.

Proposition

Suppose G has a cycle M-basis with associated dual Laplacian \mathcal{L}^. Then the number of τ-superstable configurations of G is given by $|\tau(G)|$, the number of spanning trees of G.***

- In the classical case the superstable configs have a lot to say about the graph (external activity, Tutte polynomial, etc.)
- Interpretation here not so clear.
Example

For the case of the graph K_5 (and our example of \mathcal{L}^* from above) we get 125 elements that form a ‘multicomplex’

The maximal elements are

$$\{000112, 000211, 010022, 010210, 010300, 020021, 020040, 020111, 021020, 021110, 030101, 100102, 101020, 101110, 130020, 130110, 200021, 200111, 210020, 210110, 300020, 310000\}.$$

The degree sequence is given by $c = (1, 6, 19, 38, 39, 19, 3)$, where the number of z-superstable configurations of degree $d - 1$ is given by the entry c_d.
Circuit M-bases

- Although any graph admits a cycle M-basis the elements in our basis for $\ker \tilde{\partial}$ can have lots of large integers.

- Want to find an M-basis consisting only of circuits: each entry should be $0, -1, 1$, with the nonzero entries corresponding to some circuit (simple closed path) of G.

- Such a basis will be called a circuit M-basis.

Proposition

Planar graphs as well as the graphs K_5 and $K_{3,3}$ admit circuit M-bases.
Further thoughts and open questions

- Main open question: Does any graph admit circuit M-basis? Perhaps for a class of graphs?
- Restrictions on the size of circuits in a circuit M-basis? (partial results)
- Find an explicit bijection between the set of z-superstable and the set $\tau(G)$ of spanning trees.
- What do the z-superstable configurations count?
 - In the case of classical chip-firing, the number of superstable configs of degree d are given by the number of spanning trees with d externally passive edges.
 - Notion of activity here?
- More general unimodular matroids?