
A CW-COMPLEX OF MONOTONE

POLYHEDRAL PATHS.

Jesús A. De Loera

University of California, Davis

AMS Central Sectional Meeting — September of 2020

1



Our Team
joint work with Christos Athanasiadis and Zhenyang Zhang

2



MONOTONE PATHS

Every generic linear functional f induces an orientation on the
graph of P. We call this directed graph ω(P, f ).

Note that ω(P, f ) is acyclic and has a unique source vmin and a
unique sink vmax.
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MONOTONE PATHS ON POLYTOPES

An f -monotone path on P is any directed path in ω(P, f ) from vmin to
vmax.
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THE FLIP GRAPH OF MONOTONE PATHS
Two f -monotone paths differ by a polygon flip across a 2-dimensional
face F if they agree on all edges except follow two different paths on
F.
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FLIP GRAPH OF MONOTONE PATHS

The flip graph is the (undirected) graph with nodes all f -monotone
paths on P and edges are pairs of monotone paths which differ by a
polygon flip.
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OUR KEY QUESTIONS

QUESTION A
What are the extremal values for number of monotone paths for
every objective function f on polytopes P with fixed number of
vertices and dimension?

QUESTION B
Can we bound the diameter of polygon flip graph for polytopes P
with fixed number of vertices and dimension?

Answering the questions requires understanding the SPACE
OF ALL MONOTONE PATHS.
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ANSWER A: EXTREME VALUES FOR NUMBER OF

MONOTONE PATHS

THEOREM

Let µ(P, f ) be the number of monotone paths on polytope P with
objective function f .

For all 3-dimensional polytopes P with n vertices,⌈n
2

⌉
+ 2 ≤ µ(P, f ) ≤ Tn−1,

where Tn is the Tribonacci numbers defined by the recurrence
T0 = T1 = 1, T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.
For all d-dimensional (d ≥ 4) polytopes P on n vertices,⌈

dn
2

⌉
+ 2− n ≤ µ(P, f ) ≤ 2n−2.

8



ANSWER A: EXTREME VALUES FOR NUMBER OF

MONOTONE PATHS

THEOREM

Let µ(P, f ) be the number of monotone paths on polytope P with
objective function f .

For all 3-dimensional polytopes P with n vertices,⌈n
2

⌉
+ 2 ≤ µ(P, f ) ≤ Tn−1,

where Tn is the Tribonacci numbers defined by the recurrence
T0 = T1 = 1, T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.
For all d-dimensional (d ≥ 4) polytopes P on n vertices,⌈

dn
2

⌉
+ 2− n ≤ µ(P, f ) ≤ 2n−2.

8



ANSWER A: EXTREME VALUES FOR NUMBER OF

MONOTONE PATHS

THEOREM

Let µ(P, f ) be the number of monotone paths on polytope P with
objective function f .

For all 3-dimensional polytopes P with n vertices,⌈n
2

⌉
+ 2 ≤ µ(P, f ) ≤ Tn−1,

where Tn is the Tribonacci numbers defined by the recurrence
T0 = T1 = 1, T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.
For all d-dimensional (d ≥ 4) polytopes P on n vertices,⌈

dn
2

⌉
+ 2− n ≤ µ(P, f ) ≤ 2n−2.

8



UPPER BOUNDS FOR DIAMETER OF FLIP GRAPHS

QUESTION

Can we bound the diameter of flip graphs for polytopes P with fixed
number of vertices and dimension?

Remark: This is a very natural type of question:
Sleator-Tarjan-Thurston investigated the diameter of associahedra in
terms of triangulation flips.

THEOREM

Let G(P, f ) be the flip graph of polytope P on objective function f . For
any 3-dimensional polytope P on n vertices.

d(n− 2)2

4
e ≤ diam G(P, f ) ≤ (n− 2)bn− 1

2
c.
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Two paths of distance 16. The flips are {1, 2, 3}, {7, 9, 10}, {7, 8, 10},
{8, 9, 10}, {2, 3, 5}, {2, 4, 5}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3}, {5, 7, 8},
{5, 6, 8}, {6, 8, 9}, {6, 7, 9}, {7, 9, 10}, {7, 8, 10} and {8, 9, 10}.

10



A CW-COMPLEX OF MONOTONE PATHS (FIBER

POLYTOPES!)

Theorem (Billera-Kapranov- Sturmfels 1994) There is a CW
complex, built from a linear functional on a d-dimensional
convex polytope, whose 1-skeleton is the entire flip graph. It has
the homotopy type of the (d − 2)-sphere.

Corollary The polygon flip graph is connected, because CW
complex is actually connected

Theorem (Athanasiadis-Edelman-Reiner 2000) Graph of
f -monotone paths on a d-polytope P is (d − 1)-connected for
simple polytopes, but the graph is 2-connected for any
d-polytope with d ≥ 3.
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FIBER POLYTOPES
The function f yields a linear map of P to a line segment. There are
finitely many different fibers

Theorem (Billera-Sturmfels 1992) The Minkowski sum of all the
fibers gives rise to a fiber polytope, whose vertices are in bijection
with the coherent monotone paths. The coherent Monotone paths are
connected by polygon flips. Examples: Secondary Polytopes!!
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OPEN PROBLEMS!!
QUESTION

The fiber polytopes we study here are Monotone Path Polytopes.
Some researchers have studied them. E.g., MPP of a simplex is a
cube, the MPP of a zonotope is another zonotope. Can you
characterize other MPPs for famous polytopes?

YES! Joint work with Alex Black 2020, complete combinatorial
characterizations of MPPs of Platonic Solids, Archimedean solids,
cross-polytopes of arbitrary dimension. Check Arxiv soon!!

QUESTION

What is the maximum number of monotone paths on 3-dimensional
simple polytopes on 2n vertices? Is it Fn+2 + 1, where Fn is the
Fibonacci numbers, achieved by wedges of (n+1)-gon?

QUESTION

What is the exact value of the maximum diameter of flip graph? In
particular, is it equal to the lower bound given for every n?
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Gracias!
Merci!

Thank you!

Take care!
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