Unbounded Matroids

Jeremy L. Martin
Department of Mathematics
University of Kansas

Triangle Lectures in Combinatorics
UNC Greensboro
December 3, 2022

Coauthors

Jonah Berggren
(Kentucky)

José Samper (PUC-Chile)

Matroids

Matroids are combinatorial models of linear (in)dependence. A matroid M on finite ground set E can be characterized by its bases, or its rank function, or its lattice of flats, or ...

Definition

A matroid basis system is a nonempty set family $\mathcal{B} \subset 2^{E}$ with

1. $|B|=\left|B^{\prime}\right|=r$ for all $B, B^{\prime} \in \mathcal{B}$
2. $\forall e \in B \backslash B^{\prime}: \exists e^{\prime} \in B^{\prime} \backslash B: B \backslash e \cup e^{\prime} \in \mathcal{B}$ (exchange axiom)

Canonical example $\# 1: E=$ vectors, $\mathcal{B}=$ bases of their span Canonical example \#2: $E=E(G), \mathcal{B}=$ spanning trees

- Intuition: There are lots of ways of getting from B to B^{\prime} by changing one element at a time.
- B, B^{\prime} are "close" only if $\left|B \triangle B^{\prime}\right|=2$.

Matroids

Rank function: $\rho: 2^{E} \rightarrow \mathbb{N}$ satisfying

- $\rho(A) \leq|A|$;
- $A \subseteq B \Longrightarrow \rho(A) \leq \rho(B) \quad$ (monotonicity);
- $\rho(A)+\rho(B) \geq \rho(A \cap B)+\rho(A \cup B) \quad$ (submodularity).
"Cryptomorphisms" between basis system and rank function:

$$
\begin{aligned}
\mathcal{B} & =\{B \subseteq E: \rho(B)=|B|=\rho(E)\} \\
\rho(A) & =\max \{|A \cap B|: B \in \mathcal{B}\}
\end{aligned}
$$

Flats: $S \subseteq E$ such that $T \supsetneq S \Longrightarrow \rho(T)>\rho(S)$

- Flats form a geometric lattice $\mathcal{L}(M)$

Matroid Base Polytopes

The base polytope of a matroid M^{E} is

$$
P(M)=\operatorname{conv}\left\{\chi_{B} \mid B \in \mathcal{B}(M)\right\} \subset[0,1]^{E}
$$

Example
$M=$ uniform matroid $U_{r}(n)$ with $\mathcal{B}=\binom{[n]}{r}$
$P(M)=\left\{\mathbf{x} \in[0,1]^{n} \mid \sum x_{i}=r\right\}$ (hypersimplex)

Matroid Base Polytopes: Basic Properties

For $\mathbf{x} \in \mathbb{R}^{E}$ and $A \subseteq E$, write $\mathbf{x}(A)=\sum_{i \in A} x_{i}$.

- $P(M)$ lies in the hyperplane $H=\left\{\mathbf{x} \in \mathbb{R}^{E} \mid \mathbf{x}(E)=\rho(E)\right\}$
- In particular, $\operatorname{dim} P(M)<|E|$.
- $P\left(M \oplus M^{\prime}\right)=P(M) \times P\left(M^{\prime}\right)$
- Here $\mathcal{B}\left(M \oplus M^{\prime}\right)=\left\{B \cup B^{\prime}: B \in \mathcal{B}(M), B^{\prime} \in \mathcal{B}\left(M^{\prime}\right)\right\}$
- Inequality description [Edmonds '70]:

$$
P(M)=\{\mathbf{x} \in H \mid \mathbf{x}(A) \leq \rho(A) \quad \forall A \subseteq E\}
$$

- $A \subseteq \mathcal{L}(M)$ suffices. Facets: [Feichtner-Sturmfels '05]

Matroid Base Polytopes: Edges

- Vertices of $P(M) \longleftrightarrow$ bases $B \in \mathcal{B}(M)$
- Edges of $P(M) \longleftrightarrow$ basis exchanges

$$
\mathcal{B}=\{12,13,14,24,34\}
$$

$$
\mathcal{B}=\{12,13,14,34\}
$$

Not a matroid base polytope
(\mathcal{B} fails exchange condition)

Generalized Permutahedra

Matroid base polytopes are generalized permutahedra [Postnikov '09]:

- all edges are parallel to vectors $\mathbf{e}_{i}-\mathbf{e}_{j}$ (= type-A roots)
- Normal fan coarsens the braid fan
- Face maximized by a linear functional $\mathbf{x} \rightarrow \mathbf{c} \cdot \mathbf{x}$ depends only on the relative order of c_{1}, \ldots, c_{n}

Matroid base polytopes are exactly the GPs with 0,1 -vertices [Gel'fand-Goresky-Macpherson-Serganova '87]

Polymatroids

Definition (Edmonds '70)

A polymatroid rank function is a submodular rank function $\rho: 2^{E} \rightarrow \mathbb{R}$ that is

- calibrated: $\rho(\emptyset)=0$,
- monotone: $S \subseteq T \Longrightarrow \rho(S) \leq \rho(T)$,
- but does not necessarily satisfy $\rho(S) \leq|S|$.

The base polytope of ρ is

$$
P(M)=\left\{\mathbf{x} \in \mathbb{R}^{E} \mid \mathbf{x}(A) \leq \rho(A) \forall A \subseteq E, \quad \mathbf{x}(E)=\rho(E)\right\}
$$

This construction gives a bijection between generalized permutahedra and polymatroids.

Submodular Systems

Definition (Fujishige '05)

A submodular system is a triple $M=(E, \mathcal{D}, \rho)$, where

- \mathcal{D} is a distributive sublattice of 2^{E}; and
- $\rho: \mathcal{D} \rightarrow \mathbb{R}$ is a calibrated submodular rank function.
(Or: $\rho: 2^{E} \rightarrow \mathbb{R} \cup\{\infty\}$ and $\mathcal{D}=\{A \subseteq E \mid \rho(A)<\infty\}$.)
The corresponding base polyhedron is (again)

$$
P(M)=\left\{\mathbf{x} \in \mathbb{R}^{E} \mid \mathbf{x}(A) \leq \rho(A) \forall A \in \mathcal{D}, \quad \mathbf{x}(E)=\rho(E)\right\}
$$

This polyhedron is unbounded iff $\mathcal{D} \neq 2^{E}$. It is a generalized permutahedron: all edges and rays are parallel to roots of type A.

D-Matroids

Our project: Study 0/1-generalized permutahedra that need not be bounded (unbounded matroid polyhedra) and their combinatorial analogues (unbounded matroids/D-matroids).

Definition

A D-matroid is a submodular system $M=(E, \mathcal{D}, \rho)$, where $\mathcal{D} \subseteq 2^{E}$ is a distributive lattice and $\rho: \mathcal{D} \rightarrow \mathbb{N}$ is integral, monotone, and unit-increase (as well as calibrated and submodular).

- D-matroids are essentially identical to the pregeometries of [Faigle 1980]. However, Faigle defined bases differently (and purely combinatorially).
- A D-matroid is a matroid precisely when $\mathcal{D}=2^{E}$.
- D-matroids admit a Hopf monoid structure [Castillo-JLM-Samper '22 ${ }^{+}$]

Matroids
Matroid base polytopes

- Horizontal lines are bijections; others are inclusions
- Left/right = combinatorial/geometric
- Bottom/top = integer/real
- Front/back = bounded/possibly unbounded

Example: The Stalactite

The stalactite is the polyhedron
$Q=\left\{\mathbf{x} \in \mathbb{R}^{4}: x_{1}+x_{2}+x_{3}+x_{4}=2, x_{2}, x_{3}, x_{4} \geq 0, x_{1}, x_{2}, x_{3} \leq 1\right\}$.

- Recession cone: $R=\mathbb{R}_{\geq 0}\langle(-1,0,0,1)\rangle$
- $\mathbf{e}_{4}-\mathbf{e}_{1} \in R \Longleftrightarrow 1<_{\mathcal{P}} 4$, where $\mathcal{P}=\operatorname{lrr}(\mathcal{D})$

Example: The Stalactite

Maximal chain in \mathcal{D}

$$
\begin{gathered}
\text { Vertex } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \\
x_{A_{i} \backslash A_{i-1}}=\rho\left(A_{i}\right)-\rho\left(A_{i-1}\right)
\end{gathered}
$$

- Vertices $\{12,13,14,23\}$ do not form a matroid basis system

More Examples

More Examples

- Minimal elements of maximum rank are not all same size
- Bases: 134, 145 (note that $134 \notin \mathcal{D}$)

Lattice Extensions and Sheared Polyhedra

Definition

Let $M=(E, \mathcal{D}, \rho)$ be a D -matroid and \mathcal{D}^{\prime} be a distributive lattice with $\mathcal{D} \subseteq \mathcal{D}^{\prime} \subseteq 2^{E}$.

A lattice extension of M is a D-matroid $M^{\prime}=\left(E, \mathcal{D}^{\prime}, \rho^{\prime}\right)$ such that $\left.\rho^{\prime}\right|_{\mathcal{D}}=\rho$.

Theorem (Berggren-JLM-Samper)

M^{\prime} is a lattice extension of M if and only if

- $P\left(M^{\prime}\right) \subseteq P(M)$ and
- $V\left(P\left(M^{\prime}\right)\right) \supseteq V(P(M))$.

In this case we say that $P\left(M^{\prime}\right)$ is a shearing of $P(M)$.

Example: Shearing the Stalactite

$$
\rho(A)=\min (|A|, 2)
$$

Generous Extensions

Theorem (Berggren-JLM-Samper)

Let $M=(E, \mathcal{D}, \rho)$ be a D-matroid and \mathcal{D}^{\prime} be a distributive lattice with $\mathcal{D} \subseteq \mathcal{D}^{\prime} \subseteq 2^{E}$.
Then there exists a D-matroid $M^{\prime}=\left(E, \mathcal{D}^{\prime}, \rho^{\prime}\right)$ (the generous extension of M to \mathcal{D}^{\prime}) such that:

1. M^{\prime} is a lattice extension of M to \mathcal{D}^{\prime}.
2. If $\left(E, \mathcal{D}^{\prime}, \phi\right)$ is any lattice extension of M to \mathcal{D}^{\prime}, then $\rho^{\prime}(A) \geq \phi(A)$ for all $A \subseteq E$.

Corollary

1. $P\left(M^{\prime}\right)$ is the unique largest sheared polyhedron of $P(M)$ with recession cone $R\left(\mathcal{D}^{\prime}\right)$.
2. $P(M)$ contains a unique largest matroid base polytope.

Generous Extensions

Sketch of proof: It is enough to consider the case $\mathcal{D}^{\prime}=\mathcal{D}[a]=$ smallest distrib. lattice containing $\mathcal{D} \cup\{\{a\}\}$, where $a \in E$. Define

$$
\rho^{\prime}(S)= \begin{cases}\rho(S) & \text { if } S \in \mathcal{D} \\ \rho(S-a) & \text { if } S \notin \mathcal{D} \text { and } \rho(S-a)=\rho\left(\sup _{\mathcal{D}}(S)\right) \\ \rho(S-a)+1 & \text { if } S \notin \mathcal{D} \text { and } \rho(S-a)<\rho\left(\sup _{\mathcal{D}}(S)\right)\end{cases}
$$

where $\sup _{\mathcal{D}}(S)=$ smallest element of \mathcal{D} containing S.
("Tacking on a increments rank except when it obviously can't.")
Every extension to \mathcal{D}^{\prime} is bounded by ρ^{\prime}; as a consequence, the order of adjoining atoms does not matter.

Generous Extensions

Corollary

1. Every D-matroid base polyhedron is the Minkowski sum of a matroid base polytope with its recession cone.
2. The base polytope of the generous matroid extension of a D-matroid M is

- the convex hull of all 0,1-vectors in $P(M)$;
- the intersection of $P(M)$ with the appropriate hypersimplex;
- the union of all sheared matroid polytopes in $P(M)$.

Remark

- We do not know a closed formula for the rank function of the generous matroid extension.
- The construction fails entirely without the 0/1-condition!

Bases of D-Matroids

Proposition

Let $M^{\prime}=\left(E, \mathcal{D}^{\prime}, \rho\right)$ be a D-matroid with basis system \mathcal{B}^{\prime} and $\mathcal{D} \subseteq \mathcal{D}^{\prime}$ a distributive lattice. Let $\mathcal{P}=\operatorname{Irr}(\mathcal{D})$.
Then the basis system of the lattice restriction $M=\left.M^{\prime}\right|_{\mathcal{D}}$ is im f, where $f: \operatorname{Lin}(\mathcal{P}) \rightarrow \mathcal{B}^{\prime}$ sends $\sigma \in \operatorname{Lin}(\mathcal{P})$ to the σ-lex-first basis.

Definition

The pseudo-independence complex of a D-matroid
$M=(E, \mathcal{D}, \rho)$ is the simplicial complex $\Delta(M)$ on E generated by the bases.

Example
The stalactite has $\mathcal{B}=\{12,13,14,23\}$ and $\Delta=\langle 12,13,14,23\rangle$.

The Pseudo-Independence Complex

Theorem

Every D-matroid pseudo-independence complex $\Delta(M)$ is shellable.

In fact, every generic linear functional ℓ in the interior of $R(P(M))^{*}$ defines a linear order on vertices of $P(M)$ that is a shelling order on $\Delta(M)$.

Proof uses a polyhedral result of Heaton and Samper.

Questions

- What characterizes these complexes?
- What do their h-numbers count?

D-Matroids and Subspace Arrangements

$\mathcal{A}=\left(V_{1}, \ldots, V_{n}\right)=$ arrangement of linear subspaces in \mathbb{K}^{d}
$c_{i}=\operatorname{codim} V_{i}$
D-matroid $M(\mathcal{A})$ that represents \mathcal{A} :

$$
\left.\begin{array}{rl}
\mathcal{D} & =J\left(\left[c_{1}\right] \times \cdots \times\left[c_{n}\right]\right) \\
& =\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \mid 0 \leq a_{i} \leq c_{i} \quad \forall i\right\} \\
\rho(\mathbf{a}) & =\max \left\{\operatorname{codim}\left(W_{1} \cap \cdots \cap W_{n}\right) \left\lvert\, \begin{array}{c}
V_{i} \subseteq W_{i} \subseteq \mathbb{K}^{d} \\
\operatorname{codim} W_{i}=a_{i}
\end{array} \quad \forall i\right.\right.
\end{array}\right\}
$$

- This construction is due to [Barnabei-Nicoletti-Pezzoli '98].
- $M(\mathcal{A})$ is a poset matroid in their sense (a D-matroid such that every vertex is in \mathcal{D}).

D-Matroids and Subspace Arrangements

Theorem

1. Suppose that $c_{k}=\operatorname{codim} V_{k} \geq 2$ for some $k \in[n]$. Let a be the atom corresponding to the top element of the chain $\left[0, c_{k}\right]$. Then the generous extension of $M(\mathcal{A})$ to $\mathcal{D}[a]$ represents

$$
\mathcal{A} \backslash\left\{V_{k}\right\} \cup\left\{V_{k}^{\prime}, V_{k}^{\prime \prime}\right\}
$$

where $V_{k}^{\prime}, V_{k}^{\prime \prime}$ are generic linear spaces containing V_{k} of codimensions 1 and $c_{k}-1$.
2. The generous matroid extension of $M(\mathcal{A})$ represents any hyperplane arrangement formed by replacing every V_{i} with c_{i} generic hyperplanes containing V_{i}.

In particular, generous matroids are multisymmetric in the sense of [Crowley-Huh-Larson-Simpson-Wang '22 ${ }^{+}$].

Thank you!

References

M. Barnabei, G. Nicoletti, and L. Pezzoli. Matroids on partially ordered sets. Adv. in Appl. Math., 21(1):78-112, 1998.
F. Castillo, J.L. Martin, and J.A. Samper. Hopf monoids of ordered simplicial complexes. Preprint, arXiv:2011.14955, 2020.
C. Crowley, J. Huh, M. Larson, C. Simpson, and B. Wang. The Bergman fan of a polymatroid. Preprint, arXiv:2207.08764, 2022.
J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial optimization—Eureka, you shrink!, Lect. Notes Comput. Sci., 2570, pp. 11-26, 2003.
U. Faigle. Geometries on partially ordered sets. J. Combin. Theory Ser. B, 28(1):26-51, 1980.
E.M. Feichtner and B. Sturmfels. Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62(4):437-468, 2005.
S. Fujishige. Submodular functions and optimization, 2nd edn., Elsevier, 2005.
I.M. Gel'fand, R.M. Goresky, R.D. MacPherson, and V.V. Serganova. Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math., 63(3):301-316, 1987.
A. Heaton and J.A. Samper. Dual matroid polytopes and internal activity of independence complexes. Preprint, arXiv:2005.04252, 2020.
A. Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, (6):1026-1106, 2009.

