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Matroids are combinatorial models of linear (in)dependence.
A matroid M on finite ground set E can be characterized by its
bases, or its rank function, or its lattice of flats, or ...

Definition

A matroid basis system is a nonempty set family B C 2F with
1. |B|=|B'|=rforall B,B' € B
2. Vee B\B': 3¢’ € B'\B: B\eU ¢ € B (exchange axiom)

Canonical example #1: E = vectors, B = bases of their span
Canonical example #2: E = E(G), B = spanning trees

» Intuition: There are lots of ways of getting from B to B’ by
changing one element at a time.

> B, B’ are “close” only if |BAB'| = 2.
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Rank function: p: 2 — N satisfying
> p(A) < |Af;
» ACB = p(A) < p(B) (monotonicity);
> p(A)+p(B) > p(ANB) + p(AUB) (submodularity).

“Cryptomorphisms” between basis system and rank function:

B={BCE:p(B)=|B| = p(E)}
p(A) = max{|AN B|: B € B}

Flats: SC Esuchthat T2 S = p(T) > p(S)
» Flats form a geometric lattice £L(M)
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Matroid Base Polytopes

The base polytope of a matroid ME is
P(M) = conv{xg | B € B(M)} c [0,1]E

Example

M = uniform matroid U,(n) with B = ([’r’])
P(M) = {x€[0,1]" | >~ x; = r} (hypersimplex)
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Matroid Base Polytopes: Basic Properties

For x € RE and A C E, write x(A) = 3,4 X
» P(M) lies in the hyperplane H = {x € RE | x(E) = p(E)}

» In particular, dim P(M) < |E|.

> P(Ma& M) = P(M) x P(M")
> Here BIM & M') = {BUB': B e B(M), B' € B(M')}

» Inequality description [Edmonds '70]:
P(M)={xe€ H|x(A) < p(A) VAC E}

» A C L(M) suffices. Facets: [Feichtner—Sturmfels '05]
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Matroid Base Polytopes: Edges

» Vertices of P(M) <— bases B € B(M)
» Edges of P(M) <— basis exchanges

1001 1001

1010 0011 1010 0011
1100 0101 1100

B ={12,13,14,24,34} B ={12,13,14,34}
Not a matroid base polytope
(B fails exchange condition)
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Generalized Permutahedra

Matroid base polytopes are generalized permutahedra
[Postnikov '09]:

> all edges are parallel to vectors e; — e; (= type-A roots)
» Normal fan coarsens the braid fan

» Face maximized by a linear functional x — ¢ - x depends only
on the relative order of c1,..., ¢y

Matroid base polytopes are exactly the GPs with 0,1-vertices
[Gel'fand—Goresky—Macpherson—Serganova '87]
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Polymatroids

Definition (Edmonds '70)

A polymatroid rank function is a submodular rank function
p:2F = R thatis

» calibrated: p(0)) =0,

» monotone: SC T = p(S) < p(T),

» but does not necessarily satisfy p(S) < |S].

The base polytope of p is
P(M) = {x € RE | x(A) < p(A) VAC E, x(E) = p(E)} .

This construction gives a bijection between generalized
permutahedra and polymatroids.

9/27



Submodular Systems

Definition (Fujishige '05)

A submodular system is a triple M = (E, D, p), where
» D is a distributive sublattice of 2F; and
» p:D — R is a calibrated submodular rank function.

(Or: p:2F s RU{oc}and D ={AC E | p(A) < c0}.)
The corresponding base polyhedron is (again)
P(M) = {x € RE | x(A) < p(A) VA€ D, x(E)= p(E)} .

This polyhedron is unbounded iff D # 2F. It is a generalized
permutahedron: all edges and rays are parallel to roots of type A.
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Our project: Study 0/1-generalized permutahedra that need not be
bounded (unbounded matroid polyhedra) and their combinatorial
analogues (unbounded matroids/D-matroids).

Definition

A D-matroid is a submodular system M = (E, D, p), where

D C 2F is a distributive lattice and p D — N is integral,
monotone, and unit-increase (as well as calibrated and
submodular).

» D-matroids are essentially identical to the pregeometries of
[Faigle 1980]. However, Faigle defined bases differently (and
purely combinatorially).

» A D-matroid is a matroid precisely when D = 2F.

» D-matroids admit a Hopf monoid structure
[Castillo-JLM-Samper '227]
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Submodular systems EGPs

/ /

Polymatroids GPs

D-matroids 0/1 EGPs
Matroids — Matroid base polytopes

» Horizontal lines are bijections; others are inclusions
» Left/right = combinatorial /geometric

» Bottom/top = integer/real

» Front/back = bounded/possibly unbounded
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Example: The Stalactite

The stalactite is the polyhedron

Q={xeR" xi+x+x3+x =2, x2,x3,x3 >0, x1,x0,x3 < 1}.

1001

0110

» Recession cone: R = R>o((—1,0,0,1))
> es—e € R < 1<p4 where P =Irr(D)
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Example: The Stalactite

D 1234(2)
P
p(A) = min(|A], 2) 123(2)  134(2)  124(2)
b >k >
23(2)  12(2) 13(2) 14(2)
(l >< >< | 0 —
2(1

\'/

Maximal chain in D ~ Vertex x = (x1,...,Xp)
D=ACAC - CA=E XA\A,l—P( i) - ,O(A: 1)

» Vertices {12,13, 14,23} do not form a matroid basis system
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More Examples

M, 123 (2) M, 123 (2)
VRN VRN
12(1) 23(2) 12(2)  23(1)
/SN S N4
1(1) 2 (1) 1(1) 2 (1)
NS NS
0 (0) 0 (0)

(1,1,0) (1,0,1)

. y P(M)
/ P(M)

(0,1,1)

15/27



More Examples

12345 (3)
VRN
1234 (3) 1245 (3)
SN N

123 (2) 124 (2) 145 (3)

NN SN
12(1) 14(2)  45(2)

N SN/
1 (1) 4 (1)
NS
0 (0)

» Minimal elements of maximum rank are not all same size
> Bases: 134, 145 (note that 134 ¢ D)
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Lattice Extensions and Sheared Polyhedra

Definition
Let M = (E, D, p) be a D-matroid and D’ be a distributive lattice
with D C D’ C 2F.

A lattice extension of M is a D-matroid M’ = (E, D', p') such
that p'|p = p.

Theorem (Berggren—JLM-Samper)

M’ is a lattice extension of M if and only if
» P(M') C P(M) and
> V(P(M')) D V(P(M)).

In this case we say that P(M') is a shearing of P(M).
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Example: Shearing the Stalactite

1001

p(A) = min(|A],2)

0110
1001 1001 1001
1010 L 1010 L 1010
0011 0011
1100 1100 1100
0101

0110 0110 0110
p(A) = min(A],2) . p(A) = min(A],2)
except p(24) =1 p(A) = min([A], 2) except p(34) =1
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Generous Extensions

Theorem (Berggren—JLM-Samper)

Let M = (E, D, p) be a D-matroid and D' be a distributive lattice
with D C D' C 2F.

Then there exists a D-matroid M’ = (E, D', p') (the generous
extension of M to D’) such that:
1. M’ is a lattice extension of M to D'.

2. If (E, D', ¢) is any lattice extension of M to D', then
P (A) > 6(A) for all AC E.
Corollary

1. P(M’) is the unique largest sheared polyhedron of P(M) with
recession cone R(D').

2. P(M) contains a unique largest matroid base polytope.
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Generous Extensions

Sketch of proof: It is enough to consider the case D’ = D[a] =
smallest distrib. lattice containing D U {{a}}, where a € E. Define
p(S) ifSeD
J(S)={ p(S—a)  i£S¢#Dand p(S—a) = p(supp(S))
p(S—a)+1 ifS&Dandp(S—a)<p(supp(S))
where supp(S) = smallest element of D containing S.
(“Tacking on a increments rank except when it obviously can't.")

Every extension to D’ is bounded by p’; as a consequence, the
order of adjoining atoms does not matter.
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Generous Extensions

Corollary

1. Every D-matroid base polyhedron is the Minkowski sum of a
matroid base polytope with its recession cone.

2. The base polytope of the generous matroid extension of a
D-matroid M is

» the convex hull of all 0,1-vectors in P(M);
> the intersection of P(M) with the appropriate hypersimplex;
» the union of all sheared matroid polytopes in P(M).

Remark

» We do not know a closed formula for the rank function of the
generous matroid extension.

» The construction fails entirely without the 0/1-condition!
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Bases of D-Matroids

Proposition

Let M' = (E, D', p) be a D-matroid with basis system B’ and

D C D' a distributive lattice. Let P = lrr(D).

Then the basis system of the lattice restriction M = M'|p is im f,
where f : Lin(P) — B’ sends o € Lin(P) to the o-lex-first basis.

Definition

The pseudo-independence complex of a D-matroid

M = (E, D, p) is the simplicial complex A(M) on E generated by
the bases.

Example
The stalactite has B = {12,13,14,23} and A = (12,13, 14,23).

2
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The Pseudo-Independence Complex

Theorem
Every D-matroid pseudo-independence complex A(M) is shellable.

In fact, every generic linear functional £ in the interior of
R(P(M))* defines a linear order on vertices of P(M) that is a
shelling order on A(M).

Proof uses a polyhedral result of Heaton and Samper.

Questions

» What characterizes these complexes?
» What do their h-numbers count?
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D-Matroids and Subspace Arrangements

A= (W,...,V,) = arrangement of linear subspaces in k¢
¢; = codim V;

D-matroid M(.A) that represents A:

D=J(ca] x - x[cn])
={a=(a1,...,an) |0<a; < ¢ Vi}
Vi C W Ck? }
Vi

p(a) = max {COdim(Wl n---N Wn) codim W: = a:

» This construction is due to [Barnabei-Nicoletti-Pezzoli '98].
» M(A) is a poset matroid in their sense (a D-matroid such

that every vertex is in D).
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D-Matroids and Subspace Arrangements

Theorem

1. Suppose that ¢, = codim V) > 2 for some k € [n]. Let a be
the atom corresponding to the top element of the chain [0, c].
Then the generous extension of M(.A) to D[a] represents

where V|, V| are generic linear spaces containing V) of
codimensions 1 and ¢, — 1.

2. The generous matroid extension of M(.A) represents any
hyperplane arrangement formed by replacing every V; with ¢;
generic hyperplanes containing V;.

In particular, generous matroids are multisymmetric in the sense
of [Crowley—Huh-Larson—-Simpson-Wang '2271].
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Thank youl!
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