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(Kentucky) (PUC–Chile)

2 / 27



Matroids

Matroids are combinatorial models of linear (in)dependence.
A matroid M on finite ground set E can be characterized by its
bases, or its rank function, or its lattice of flats, or . . .

Definition
A matroid basis system is a nonempty set family B ⊂ 2E with

1. |B| = |B ′| = r for all B,B ′ ∈ B
2. ∀e ∈ B\B ′ : ∃e ′ ∈ B ′\B : B\e ∪ e ′ ∈ B (exchange axiom)

Canonical example #1 : E = vectors, B = bases of their span
Canonical example #2 : E = E (G ), B = spanning trees

▶ Intuition: There are lots of ways of getting from B to B ′ by
changing one element at a time.

▶ B,B ′ are “close” only if |B△B ′| = 2.
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Matroids

Rank function: ρ : 2E → N satisfying

▶ ρ(A) ≤ |A|;
▶ A ⊆ B =⇒ ρ(A) ≤ ρ(B) (monotonicity);

▶ ρ(A) + ρ(B) ≥ ρ(A ∩ B) + ρ(A ∪ B) (submodularity).

“Cryptomorphisms” between basis system and rank function:

B = {B ⊆ E : ρ(B) = |B| = ρ(E )}
ρ(A) = max{|A ∩ B| : B ∈ B}

Flats: S ⊆ E such that T ⊋ S =⇒ ρ(T ) > ρ(S)

▶ Flats form a geometric lattice L(M)
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Matroid Base Polytopes

The base polytope of a matroid ME is

P(M) = conv{χB | B ∈ B(M)} ⊂ [0, 1]E

Example

M = uniform matroid Ur (n) with B =
([n]
r

)
P(M) = {x ∈ [0, 1]n |

∑
xi = r} (hypersimplex)
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Matroid Base Polytopes: Basic Properties

For x ∈ RE and A ⊆ E , write x(A) =
∑

i∈A xi .

▶ P(M) lies in the hyperplane H = {x ∈ RE | x(E ) = ρ(E )}
▶ In particular, dimP(M) < |E |.

▶ P(M ⊕M ′) = P(M)× P(M ′)

▶ Here B(M ⊕M ′) = {B ∪ B ′ : B ∈ B(M), B ′ ∈ B(M ′)}

▶ Inequality description [Edmonds ’70]:

P(M) = {x ∈ H | x(A) ≤ ρ(A) ∀A ⊆ E}

▶ A ⊆ L(M) suffices. Facets: [Feichtner–Sturmfels ’05]
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Matroid Base Polytopes: Edges

▶ Vertices of P(M) ←→ bases B ∈ B(M)

▶ Edges of P(M) ←→ basis exchanges

0011

0101

1010

1100

1001

B = {12, 13, 14, 24, 34}

00111010

1100

1001

B = {12, 13, 14, 34}
Not a matroid base polytope
(B fails exchange condition)
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Generalized Permutahedra

Matroid base polytopes are generalized permutahedra
[Postnikov ’09]:

▶ all edges are parallel to vectors ei − ej (= type-A roots)

▶ Normal fan coarsens the braid fan

▶ Face maximized by a linear functional x→ c · x depends only
on the relative order of c1, . . . , cn

Matroid base polytopes are exactly the GPs with 0,1-vertices
[Gel’fand–Goresky–Macpherson–Serganova ’87]
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Polymatroids

Definition (Edmonds ’70)

A polymatroid rank function is a submodular rank function
ρ : 2E → R that is

▶ calibrated : ρ(∅) = 0,

▶ monotone: S ⊆ T =⇒ ρ(S) ≤ ρ(T ),

▶ but does not necessarily satisfy ρ(S) ≤ |S |.

The base polytope of ρ is

P(M) =
{
x ∈ RE | x(A) ≤ ρ(A) ∀A ⊆ E , x(E ) = ρ(E )

}
.

This construction gives a bijection between generalized
permutahedra and polymatroids.
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Submodular Systems

Definition (Fujishige ’05)

A submodular system is a triple M = (E ,D, ρ), where
▶ D is a distributive sublattice of 2E ; and

▶ ρ : D → R is a calibrated submodular rank function.

(Or: ρ : 2E → R ∪ {∞} and D = {A ⊆ E | ρ(A) <∞}.)

The corresponding base polyhedron is (again)

P(M) =
{
x ∈ RE | x(A) ≤ ρ(A) ∀A ∈ D, x(E ) = ρ(E )

}
.

This polyhedron is unbounded iff D ≠ 2E . It is a generalized
permutahedron: all edges and rays are parallel to roots of type A.
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D-Matroids

Our project: Study 0/1-generalized permutahedra that need not be
bounded (unbounded matroid polyhedra) and their combinatorial
analogues (unbounded matroids/D-matroids).

Definition
A D-matroid is a submodular system M = (E ,D, ρ), where
D ⊆ 2E is a distributive lattice and ρ : D → N is integral,
monotone, and unit-increase (as well as calibrated and
submodular).

▶ D-matroids are essentially identical to the pregeometries of
[Faigle 1980]. However, Faigle defined bases differently (and
purely combinatorially).

▶ A D-matroid is a matroid precisely when D = 2E .

▶ D-matroids admit a Hopf monoid structure
[Castillo–JLM–Samper ’22+]
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Matroids

D-matroids

Polymatroids

Submodular systems

Matroid base polytopes

0/1 EGPs

GPs

EGPs

▶ Horizontal lines are bijections; others are inclusions

▶ Left/right = combinatorial/geometric

▶ Bottom/top = integer/real

▶ Front/back = bounded/possibly unbounded
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Example: The Stalactite

The stalactite is the polyhedron

Q = {x ∈ R4 : x1+ x2+ x3+ x4 = 2, x2, x3, x4 ≥ 0, x1, x2, x3 ≤ 1}.

0011

0101

0110

1010

1100

1001

▶ Recession cone: R = R≥0⟨(−1, 0, 0, 1)⟩
▶ e4 − e1 ∈ R ⇐⇒ 1 <P 4, where P = Irr(D)
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Example: The Stalactite

D 1234(2)

ρ(A) = min(|A|, 2) 123(2) 134(2) 124(2)

23(2) 12(2) 13(2) 14(2)

2(1) 3(1) 1(1)

∅

Maximal chain in D ; Vertex x = (x1, . . . , xn)
∅ = A0 ⊊ A1 ⊊ · · · ⊊ An = E xAi\Ai−1

= ρ(Ai )− ρ(Ai−1)

▶ Vertices {12, 13, 14, 23} do not form a matroid basis system
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More Examples

M1 123 (2)

12 (1) 23 (2)

1 (1) 2 (1)

∅ (0)

M2 123 (2)

12 (2) 23 (1)

1 (1) 2 (1)

∅ (0)

P(M2)
(1,1,0) (1,0,1)

(0,1,1)

P(M1)
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More Examples

∅ (0)

4 (1)

45 (2)

1 (1)

14 (2)

145 (3)

12 (1)

124 (2)

1245 (3)

123 (2)

1234 (3)

12345 (3)

▶ Minimal elements of maximum rank are not all same size

▶ Bases: 134, 145 (note that 134 /∈ D)
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Lattice Extensions and Sheared Polyhedra

Definition
Let M = (E ,D, ρ) be a D-matroid and D′ be a distributive lattice
with D ⊆ D′ ⊆ 2E .

A lattice extension of M is a D-matroid M ′ = (E ,D′, ρ′) such
that ρ′|D = ρ.

Theorem (Berggren–JLM–Samper)

M ′ is a lattice extension of M if and only if

▶ P(M ′) ⊆ P(M) and

▶ V (P(M ′)) ⊇ V (P(M)).

In this case we say that P(M ′) is a shearing of P(M).
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Example: Shearing the Stalactite

ρ(A) = min(|A|, 2)0011
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1010

1100

1001
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1001

ρ(A) = min(|A|, 2)
except ρ(24) = 1

0011

0101

0110

1010
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1001

ρ(A) = min(|A|, 2)

0101

0110

1010

1100

1001

ρ(A) = min(|A|, 2)
except ρ(34) = 1
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Generous Extensions

Theorem (Berggren–JLM–Samper)

Let M = (E ,D, ρ) be a D-matroid and D′ be a distributive lattice
with D ⊆ D′ ⊆ 2E .

Then there exists a D-matroid M ′ = (E ,D′, ρ′) (the generous
extension of M to D′) such that:

1. M ′ is a lattice extension of M to D′.

2. If (E ,D′, ϕ) is any lattice extension of M to D′, then
ρ′(A) ≥ ϕ(A) for all A ⊆ E.

Corollary

1. P(M ′) is the unique largest sheared polyhedron of P(M) with
recession cone R(D′).

2. P(M) contains a unique largest matroid base polytope.
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Generous Extensions

Sketch of proof: It is enough to consider the case D′ = D[a] =
smallest distrib. lattice containing D ∪ {{a}}, where a ∈ E . Define

ρ′(S) =


ρ(S) if S ∈ D
ρ(S − a) if S ̸∈ D and ρ(S − a) = ρ(supD(S))

ρ(S − a) + 1 if S ̸∈ D and ρ(S − a) < ρ(supD(S))

where supD(S) = smallest element of D containing S .

(“Tacking on a increments rank except when it obviously can’t.”)

Every extension to D′ is bounded by ρ′; as a consequence, the
order of adjoining atoms does not matter.

20 / 27



Generous Extensions

Corollary

1. Every D-matroid base polyhedron is the Minkowski sum of a
matroid base polytope with its recession cone.

2. The base polytope of the generous matroid extension of a
D-matroid M is
▶ the convex hull of all 0,1-vectors in P(M);
▶ the intersection of P(M) with the appropriate hypersimplex;
▶ the union of all sheared matroid polytopes in P(M).

Remark
▶ We do not know a closed formula for the rank function of the

generous matroid extension.

▶ The construction fails entirely without the 0/1-condition!
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Bases of D-Matroids

Proposition

Let M ′ = (E ,D′, ρ) be a D-matroid with basis system B′ and
D ⊆ D′ a distributive lattice. Let P = Irr(D).
Then the basis system of the lattice restriction M = M ′|D is im f ,
where f : Lin(P)→ B′ sends σ ∈ Lin(P) to the σ-lex-first basis.

Definition
The pseudo-independence complex of a D-matroid
M = (E ,D, ρ) is the simplicial complex ∆(M) on E generated by
the bases.

Example

The stalactite has B = {12, 13, 14, 23} and ∆ = ⟨12, 13, 14, 23⟩.

2

3
1 4

Pseudo-independence complexes are not in general matroid
complexes (here ∆|{2,3,4} is not pure).
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The Pseudo-Independence Complex

Theorem
Every D-matroid pseudo-independence complex ∆(M) is shellable.

In fact, every generic linear functional ℓ in the interior of
R(P(M))∗ defines a linear order on vertices of P(M) that is a
shelling order on ∆(M).

Proof uses a polyhedral result of Heaton and Samper.

Questions

▶ What characterizes these complexes?

▶ What do their h-numbers count?
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D-Matroids and Subspace Arrangements

A = (V1, . . . ,Vn) = arrangement of linear subspaces in kd
ci = codimVi

D-matroid M(A) that represents A:

D = J([c1]× · · · × [cn])

= {a = (a1, . . . , an) | 0 ≤ ai ≤ ci ∀i}

ρ(a) = max

{
codim(W1 ∩ · · · ∩Wn)

∣∣∣ Vi ⊆Wi ⊆ kd
codimWi = ai

∀i
}

▶ This construction is due to [Barnabei–Nicoletti–Pezzoli ’98].

▶ M(A) is a poset matroid in their sense (a D-matroid such
that every vertex is in D).
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D-Matroids and Subspace Arrangements

Theorem

1. Suppose that ck = codimVk ≥ 2 for some k ∈ [n]. Let a be
the atom corresponding to the top element of the chain [0, ck ].
Then the generous extension of M(A) to D[a] represents

A \ {Vk} ∪ {V ′
k ,V

′′
k }

where V ′
k ,V

′′
k are generic linear spaces containing Vk of

codimensions 1 and ck − 1.

2. The generous matroid extension of M(A) represents any
hyperplane arrangement formed by replacing every Vi with ci
generic hyperplanes containing Vi .

In particular, generous matroids are multisymmetric in the sense
of [Crowley–Huh–Larson–Simpson–Wang ’22+].
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Thank you!
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