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The Chip-Firing Game

e Start with a finite, simple, connected graph G = (V, F), with V' = [n]| =
{1,2,...,n} and F = {ey,...,en}. Let d; be the degree of vertex i (the
number of adjacent vertices).

e Place ¢; chips on each vertex :. Record the number of chips by a vector
c=(c1,...,¢,) € N called a configuration.

e Vertices are altruistic (they want to donate chips to their neighbors).
They’re also egalitarian (they like all their neighbors equally).

e Vertex i is ready if ¢; > d;. Such a vertex can fire by distributing one
chip to each of its neighbors.

For example, let G be as follows:

3 4

Here is a possible sequence of firings:

5

1 3 2 0

One more thing: there is one special vertex ¢ called the bank. Unlike its
pals, the bank is a miser: it doesn’t fire, but just sits there collecting chips.
Eventually, so many chips accumulate at the bank that no other vertex can
fire. Such a configuration, is called stable.
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At this point, the bank begrudgingly fires, in order to get the economy going
again. It can even go into debt: that is, ¢, is allowed to be negative, although
no other ¢; is. An important point is that the bank fires if and only if the
current configuration is stable.

What does this have to do with anything?

The Laplacian matriz of G' is the n X n symmetric matrix L with entries

d; if 1 = j,
0 otherwise.
For the graph above we have
3 -1 —1 -1
-1 2 0 -1
L=1_1 09 2
-1 -1 -1 3

Firing a vertex is equivalent to subtracting the corresponding row of the
Laplacian from the configuration. To put it another way, if one configuration
can be obtained from another by firing a sequence of vertices, then they
represent the same element of the cokernel of the Laplacian (i.e., the quotient
of Z™ by the rowspace of L).

Proposition 1. (1) The all-ones vector 1 is a nullvector of L.
(2) Provided that G is connected, the rank of L isn — 1.

Proof. Denote the i'" row of L by L;.

(1) The assertion is equivalent to saying that each L; sums to 0. By defi-
nition, L;; equals the number of —1 entries in L;.

(2) Suppose that > " ¢;L; = 0. Let k = min{¢;} and b; = ¢; + k. Then
min{b;} = 0, and

i=1 i=1
Let X = {i | b; > 0}. Suppose that X # ). Since G is connected, there
is some vertex k ¢ X with a neighbor j € X. But then the k" entry of

Y icx GiLi is negative (there is a negative contribution from ¢ = j and a



nonpositive contribution from each other i), a contradiction. Therefore
X =0, so b; = 0 for all 7, so all the ¢;’s are equal. So 1 spans the
nullspace of L. O

To get all homological about it, we have a chain complex
zn Lz 570
where S(c) =c¢-1=¢1+ -+ ¢,. Assertion (1) of the Proposition says that

Ker(S) 2 Im(L), and assertion (2) says that the abelian group Ker(.S) Im(L)
is finite.

Fact: |Ker(5)/Im(L)| = number of spanning trees of G.

Goal: Find a bijection between Ker(S)/Im(L) and certain canonical
(“critical”) chip configurations.

The bank vertex ¢ is allowed to go into deficit, so we don’t really care about
the number of chips on it. Therefore, we may as well work with configurations

c € Ker(S), i.e., such that ", ¢; = 0.

Definition/Notation: Let ¢ be a configuration and X = (x1,...,2,) a
sequence of vertices.

e ¢ is ¢-nonnegative if Y ¢; =0 and ¢; > 0 for all i # n.
e ¢(X) or ¢(xy,...,x,) denotes the configuration obtained after the ver-
tices x1, ..., x, fire. In terms of the Laplacian,

(1) dX):c—EZLM

e X is proper (relative to ¢) if it does not contain ¢ and no non-bank
vertex goes into debt along the way. It is ¢g-proper if it is proper and
does not contain gq.

e A ¢g-nonnegative configuration c is stable if no non-bank vertex can fire,
ie., ¢; < d; for all © # ¢q. It is recurrent if there is a nontrivial firing
sequence X such that ¢(X) = ¢, and it is critical if it is both stable and
recurrent.

Our goal is the following result:

Theorem 2. Every equivalence class in Ker(S)/Im(L) contains exactly one
critical configuration.



Sketch of proof:

(1) Existence (i.e., proving that every equivalence class contains at least
one critical configuration) is fairly easy.

(2) For uniqueness, we want to show that all proper firing sequences ul-
timately lead to the same critical configuration. First, we show that
if you start with an unstable configuration, then it doesn’t matter in
which order you fire the vertices; you always get to the same stable
configuration.

(3) This means that we can model the chip-firing game by a directed graph
[' whose vertices are stable configurations, whose edges record which
configurations lead to which other ones, and where each vertex has out-
degree exactly 1. Note that a stable configuration is critical iff it is part
of a directed cycle in I'.

(4) Next we rule out all cycles of length > 1. That means that I looks like
a bunch of rooted trees, with all edges directed towards the root, plus
loops on the roots.

(5) Finally, we need to show that each component of ' corresponds to a
different congruence class modulo the Laplacian.

Lemma 3. Any sufficiently long g-proper firing sequence produces a stable
configuration.

Proof. Let ¢ = (cq,...,c,) be g-stable, let X be a g-proper firing sequence,
and let b = (by,...,b,) = ¢(X). There are only finitely many possibilities
for b, because b; > 0 for ¢+ # ¢ and Z#q b; < Z#q ¢;. Therefore, it suffices to
prove that no configuration occurs more than once during the firing sequence.

Let Y be the set of vertices that fire, and let Z =V \ Y. Then Y and Z are
both nonempty (because ¢ € Z). No chip ever moves from Z to Y, but since
(G is connected, there is at least one edge e between Y and Z, so at least one
chip moves from Z to Y. Therefore, >,y ¢; < >,.y bi, and consequently

c #b. ]

Corollary 4. Every equivalence class in Ker(S)/Im(L) contains at least one
stable configuration.

Proof. Given any configuration, fire n repeatedly until you obtain a g-nonnegative
configuration. Then apply the Lemma. ]



Lemma 5. Every equivalence class in Ker(S)/Im(L) contains at least one
critical configuration.

Proof. The number of stable configurations is finite (because 0 < ¢; < d;
for all i # n, and ¢, is determined by c1,...,¢,). So start with a stable
configuration, fire the bank until the configuration is unstable (i.e., some
other vertex is ready), reduce down to a stable configuration, and repeat.
Some stable configuration will eventually recur, hence it is critical. ]

Definition /Notation: Let X, Y be firing sequences.

e The concatenation of X and Y is denoted (X,Y).

e The score vector of X is a = (ay,...,q,), where vertex i occurs «;
times in X.

o If 5 € N" (e.g., the score vector of Y') respectively, then X \ § denotes
the sequence obtained from X by deleting the first 3; occurrences of
each i (or all occurrences if 3; > «;).

Proposition 6. c: ¢g-nonnegative configuration
X, Y : g-proper with respect to c
a, B: their score vectors

Then there ezists a q-nonnegative configuration — namely, c¢(Y, X \ §) —
reachable from both ¢(X) and c(Y').

Proof. If ¢ is stable then this is trivial, since X,Y must be empty.
Otherwise, let Z = (Y, X'\ /).

Score vector v of Z is

v = max{a;, 5;} for i # q
= score vector of Z' = (X, Y \ «)

So ¢(Z) = ¢(Z') is reachable from both ¢(X) and ¢(Y).

We need to prove that Z and Z’ are g-proper.
Suffices to prove it for Z.

Example 1. Let G be as above, and let ¢ = 5 (the square vertex). Ignore cj
(remember, we are always working with configurations in Ker(S)).



So ¢ = (5,2,0,6), and the firing sequence is X = (4,1,4). Thus
c(4) =(5,3,1,3),
c(4,1) = (3,4,1,3),
c(X)=1(3,5,2,0).
Thus X is g-nonnegative. Here’s another firing sequence: Y = (1,1,2,4,1).
This is g-nonnegative because
(1
c(1,

) =(3,3,0,6),

1)
o(1,1,2) =

) =

)=

( )
(1,4,0,6),
(2,0,1,7)
c(1,1,2,4) = ( )
c(Y)=(0,2,2,4).

2,1,2,4),

So
X\ (3= (4), (Y, X\Y)=(1,1,2,4,1,4),
Y\a=(1,2,1), (X, Y\ X)=(4,1,4,1,2,1).
Then ¢(Y, X \Y) =c(Y)(4) = (0,3,3,1). Meanwhile,
(X, 1) = (1,6,2,0),
o(X,1,2) = (2,2,3,1),
¢(X,1,2,1) = (0,3,3, 1).
So, indeed, (X, Y\ a) and (Y, X'\ 3) are g-proper, and of course ¢(X, Y \a) =
c(Y, X \ (). This sequence is not stable, because, e.g., vertex 3 can fire.

By the way, if we keep firing, we’ll eventually get a stable configuration, as
predicted by Lemma B

fire 3 to get (0,4,1,2);
fire 2 to get (1,0,2,3);
fire 4 to get (1,1,3,0);
( )

fire 3 to get (1,2,1,1) (which is stable).



Back to the proof of the general case. Essentially, we induct on the length of
X \ 3, although it is easier to state the proof algorithmically.

If it’s zero, then Z =Y is ¢g-proper and we’re done. Otherwise:
Let i be the first entry in X \ S.

o (Here X\ 3= (4),s0i=4.)

In particular, 3; < q;.

e (Here, 5y =1 and ay = 2.)

Let X' = initial subsequence of X that ends just before the (3; + 1) appear-
ance of ¢ in X. So X' is certainly g-proper.

e (Here, we want X’ to end just before the second 4, so X' = (4,1).)

Let o be the score of X’'. By construction, X’ contains exactly (; copies of
1, SO
Also, since 7 is the first entry in X \ 5, we must have

a; < B Vi

I claim that

The first inequality follows because ¢ itself has fired the same number of times
in Y as it has in X', but its neighbors have all fired at least as many times
in Y as in X, so ¢ has been donated at least as many chips. For the second
inequality, ¢ must be ready to fire in ¢(X’) because X = (X',i,...) is a
g-proper sequence.



Therefore, (Y, i) is g-proper. We can now continue by replacing Y with (Y, )
and repeating the argument. we can show that every initial subsequence of
(Y, X \ B) is g-proper. O

Corollary 7. Let ¢ be a g-nonnegative configuration, and let X and Y be q-
proper firing sequences with respect to ¢, such that ¢(X) and c¢(Y') are stable.
Then in fact ¢(X) = c(Y). Therefore, there is a unique stable configuration
reachable from ¢ by a q-proper firing sequence.

Proof. The only g-proper firing sequence following a stable sequence is the
empty sequence. So X \ § =Y \ « is empty, and X and Y must have the
same scores. [l

Define a directed graph I' whose vertices are the stable configurations (recall

H
that there are only finitely many of these), with edges cb whenever b can be
reached from c in the chip-firing game. Thus a stable configuration is critical
if and only if it is part of a (directed) cycle in T.

If c is stable, then the rules of the chip-firing game force us to fire q repeatedly
until we reach an unstable configuration, at which point Corollary [0 takes
over. Therefore, every vertex of I has out-degree exactly 1 (i.e., for each c,

H
there is exactly one edge of the form cb.

Proposition 8. I' has no cycles of length > 1.

Proof. A cycle in I' corresponds to a stable configuration ¢ and a firing se-
quence X = (z1,...,x,) such that ¢(X) = c.

o = score vector of X: nullvector of the Laplacian, hence a multiple of 1.
That is, each vertex (including ¢) appears equally many times in X.

Claim: Each i # ¢ appears exactly once in X between every two consecutive
occurrences of q.

Suppose not. Then X has a subsequence
X' =(zs=q,...,0,...,1)

44 7

where there are no occurrences of ¢ in the . By choosing the shortest
such subsequence, we can assume that no other vertex appears more than
once in X',



Let b = ¢(x1,...,25-1). The next vertex fired is ¢, so b is stable. In particular,
b; < d;. But then

b(X"); = b — 2d; + #{neighbors of i in X'} < d; —2d; +d; =0

which is illegal! This contradiction proves the claim.

That means that X must have the form

(01, 09y ..., O%)
where each o; is a permutation of V, starting with ¢. But ¢ = ¢(01) =
c(o1,09) = -+ = ¢(X). So this ostensible “cycle” in X is actually just a
repeated loop. Il

We have now proven that every starting configuration c leads to a well-
defined, unique critical configuration, which I'll call R(c) (R for “reduction”).
Also, if R(c) = b then ¢ and b are congruent modulo L. Therefore, for each
b € K(G), the corresponding fiber of R, namely

R7Y(b) = {c € Ker(S) | R(c) = b},

is contained in some coset of L.

Theorem 9. Let K(G) be the set of critical configurations. The fibers of the
function R : Ker(S) — K(G) are exactly the cosets of L. That is, R defines
a bijection

Ker(S)/Im(L) — K(Q).

Proof. Suppose that two configurations ci,cy are in the same coset of the
Laplacian. We must show that R(c;) = R(cp). Suppose that ¢ — ¢y = Lf,
where f € Z". Write f = fi — fo, where f1, fo € N". Let ¢ = ¢, — Lf; =
Co — Lf27
e For example, with GG as above, let
C1 — (4,1,6,1,—12), Cl — Cy — (3,—5,4, —3, 1)
co =(1,6,2,4,—13) =L-(1,-1,1,—-1,0),
(you could get from c; to ¢y by firing vertices 1 and 3 and “unfiring” 2 and
4, if that were legal, which it isn’t). Continuing the example:
f: (17_1717_170)7 Co = (2,3,4,2,—11)
fl — (1707 17070)7
f2 = (07 17 07 17 0)7



Let R(c;) = b€ K(G), and let X be a legal sequence such that ¢;(X) = b.
e In the example, X = (1,1,3,3,3,2,4,3,2,1,4,3), and b = (0, 3,0, 2).

We can assume that X contains each vertex i at least f1(i) times, because if
necessary, we can fire the bank and reduce back down to b (remember, b is
recurrent).

e In the example, we don’t have to do this.

Now the proof of Proposition Bl implies that X' := X \ « is proper for c.
Therefore

R(co) = co(X") = b= c1(X) = R(cq).
But the same argument implies that R(cs) = R(cp). Therefore R(cq) = R(c2)
and we're done. 0

That finishes the proof of Theorem [.

Corollary 10. The critical configurations K(G) form an group, the critical
group, under the operation of addition followed by reduction (in the chip-firing
game) to a critical configuration. This group is a finite abelian group isomor-
phic to Ker(S)/Im(L). In particular, the number of critical configurations
equals the number of spanning trees of G.



